456 research outputs found

    Reply to Comment on ``Thermal Model for Adaptive Competition in a Market''

    Full text link
    We reply to the Comment of Challet et al. [cond-mat/0004308] on our paper [Phys. Rev. Lett. 83, 4429 (1999)]. We show that the claim of the Comment that the effects of the temperature in the Thermal Minority Game ``can be eliminated by time rescaling'' and consequently the behaviour is ``independent of T'' has no general validity.Comment: 1 page, 1 figur

    Generalized strategies in the Minority Game

    Full text link
    We show analytically how the fluctuations (i.e. standard deviation) in the Minority Game (MG) can be made to decrease below the random coin-toss limit if the agents use more general behavioral strategies. This suppression of the standard deviation results from a cancellation between the actions of a crowd, in which agents act collectively and make the same decision, and an anticrowd in which agents act collectively by making the opposite decision to the crowd.Comment: Revised manuscript: a few minor typos corrected. Results unaffecte

    Minority Game of price promotions in fast moving consumer goods markets

    Full text link
    A variation of the Minority Game has been applied to study the timing of promotional actions at retailers in the fast moving consumer goods market. The underlying hypotheses for this work are that price promotions are more effective when fewer than average competitors do a promotion, and that a promotion strategy can be based on past sales data. The first assumption has been checked by analysing 1467 promotional actions for three products on the Dutch market (ketchup, mayonnaise and curry sauce) over a 120-week period, both on an aggregated level and on retailer chain level. The second assumption was tested by analysing past sales data with the Minority Game. This revealed that high or low competitor promotional pressure for actual ketchup, mayonnaise, curry sauce and barbecue sauce markets is to some extent predictable up to a forecast of some 10 weeks. Whereas a random guess would be right 50% of the time, a single-agent game can predict the market with a success rate of 56% for a 6 to 9 week forecast. This number is the same for all four mentioned fast moving consumer markets. For a multi-agent game a larger variability in the success rate is obtained, but predictability can be as high as 65%. Contrary to expectation, the actual market does the opposite of what game theory would predict. This points at a systematic oscillation in the market. Even though this result is not fully understood, merely observing that this trend is present in the data could lead to exploitable trading benefits. As a check, random history strings were generated from which the statistical variation in the game prediction was studied. This shows that the odds are 1:1,000,000 that the observed pattern in the market is based on coincidence.Comment: 19 pages, 10 figures, accepted for publication in Physica

    Continuum time limit and stationary states of the Minority Game

    Full text link
    We discuss in detail the derivation of stochastic differential equations for the continuum time limit of the Minority Game. We show that all properties of the Minority Game can be understood by a careful theoretical analysis of such equations. In particular, i) we confirm that the stationary state properties are given by the ground state configurations of a disordered (soft) spin system; ii) we derive the full stationary state distribution; iii) we characterize the dependence on initial conditions in the symmetric phase and iv) we clarify the behavior of the system as a function of the learning rate. This leaves us with a complete and coherent picture of the collective behavior of the Minority Game. Strikingly we find that the temperature like parameter which is introduced in the choice behavior of individual agents turns out to play the role, at the collective level, of the inverse of a thermodynamic temperature.Comment: Revised version (several new results added). 12 pages, 5 figure

    Trading behavior and excess volatility in toy markets

    Full text link
    We study the relation between the trading behavior of agents and volatility in toy markets of adaptive inductively rational agents. We show that excess volatility, in such simplified markets, arises as a consequence of {\em i)} the neglect of market impact implicit in price taking behavior and of {\em ii)} excessive reactivity of agents. These issues are dealt with in detail in the simple case without public information. We also derive, for the general case, the critical learning rate above which trading behavior leads to turbulent dynamics of the market.Comment: 14 pages, 4 figures, minor change

    Criticality and finite size effects in a simple realistic model of stock market

    Full text link
    We discuss a simple model based on the Minority Game which reproduces the main stylized facts of anomalous fluctuations in finance. We present the analytic solution of the model in the thermodynamic limit and show that stylized facts arise only close to a line of critical points with non-trivial properties. By a simple argument, we show that, in Minority Games, the emergence of critical fluctuations close to the phase transition is governed by the interplay between the signal to noise ratio and the system size. These results provide a clear and consistent picture of financial markets as critical systems.Comment: 4 pages, 4 figure

    Temporal oscillations and phase transitions in the evolutionary minority game

    Full text link
    The study of societies of adaptive agents seeking minority status is an active area of research. Recently, it has been demonstrated that such systems display an intriguing phase-transition: agents tend to {\it self-segregate} or to {\it cluster} according to the value of the prize-to-fine ratio, RR. We show that such systems do {\it not} establish a true stationary distribution. The winning-probabilities of the agents display temporal oscillations. The amplitude and frequency of the oscillations depend on the value of RR. The temporal oscillations which characterize the system explain the transition in the global behavior from self-segregation to clustering in the R<1R<1 case.Comment: 5 pages, 5 figure

    Mixed population Minority Game with generalized strategies

    Full text link
    We present a quantitative theory, based on crowd effects, for the market volatility in a Minority Game played by a mixed population. Below a critical concentration of generalized strategy players, we find that the volatility in the crowded regime remains above the random coin-toss value regardless of the "temperature" controlling strategy use. Our theory yields good agreement with numerical simulations.Comment: Revtex file + 3 figure

    Thermal treatment of the minority game

    Get PDF
    We study a cost function for the aggregate behavior of all the agents involved in the Minority Game (MG) or the Bar Attendance Model (BAM). The cost function allows to define a deterministic, synchronous dynamics that yields results that have the main relevant features than those of the probabilistic, sequential dynamics used for the MG or the BAM. We define a temperature through a Langevin approach in terms of the fluctuations of the average attendance. We prove that the cost function is an extensive quantity that can play the role of an internal energy of the many agent system while the temperature so defined is an intensive parameter. We compare the results of the thermal perturbation to the deterministic dynamics and prove that they agree with those obtained with the MG or BAM in the limit of very low temperature.Comment: 9 pages in PRE format, 6 figure
    corecore