2,141 research outputs found
Quantum Plasmonics with multi-emitters: Application to adiabatic control
We construct mode-selective effective models describing the interaction of N
quantum emitters (QEs) with the localised surface plasmon polaritons (LSPs)
supported by a spherical metal nanoparticle (MNP) in an arbitrary geometric
arrangement of the QEs. We develop a general formulation in which the field
response in the presence of the nanosystem can be decomposed into orthogonal
modes with the spherical symmetry as an example. We apply the model in the
context of quantum information, investigating on the possibility of using the
LSPs as mediators of an efficient control of population transfer between two
QEs. We show that a Stimulated Raman Adiabatic Passage configuration allows
such a transfer via a decoherence-free dark state when the QEs are located on
the same side of the MNP and very closed to it, whereas the transfer is blocked
when the emitters are positioned at the opposite sides of the MNP. We explain
this blockade by the destructive superposition of all the interacting plasmonic
modes
The Time of Flight System of the AMS-02 Space Experiment
The Time-of-Flight (TOF) system of the AMS detector gives the fast trigger to
the read out electronics and measures velocity, direction and charge of the
crossing particles. The new version of the detector (called AMS-02) will be
installed on the International Space Station on March 2004. The fringing field
of the AMS-02 superconducting magnet is kG where the
photomultiplers (PM) are installed. In order to be able to operate with this
residual field, a new type of PM was chosen and the mechanical design was
constrained by requiring to minimize the angle between the magnetic field
vector and the PM axis. Due to strong field and to the curved light guides, the
time resolution will be ps, while the new electronics will allow
for a better charge measurement.Comment: 5 pages, 4 figures. Proc. of 7th Int. Conf. on Adv. Tech. and Part.
Phys., 15-19 October 2001,Como (Italy
Two years of flight of the Pamela experiment: results and perspectives
PAMELA is a satellite borne experiment designed to study with great accuracy
cosmic rays of galactic, solar, and trapped nature in a wide energy range
(protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the
study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50
MeV-270 GeV) and search for antinuclei with a precision of the order of
). The experiment, housed on board the Russian Resurs-DK1 satellite,
was launched on June, 2006 in a orbit with an
inclination of 70 degrees. In this work we describe the scientific objectives
and the performance of PAMELA in its first two years of operation. Data on
protons of trapped, secondary and galactic nature - as well as measurements of
the December 2006 Solar Particle Event - are also provided.Comment: To appear on J. Phys. Soc. Jpn. as part of the proceedings of the
International Workshop on Advances in Cosmic Ray Science March, 17-19, 2008
Waseda University, Shinjuku, Tokyo, Japa
Recommended from our members
Fat and fatty acid composition of cooked meat from UK retail chickens labelled as from organic and non-organic production systems
This study compared fat and fatty acids in cooked retail chicken meat from conventional and organic systems. Fat contents were 1.7, 5.2, 7.1 and 12.9 g/100 g cooked weight in skinless breast, breast with skin, skinless leg and leg with skin respectively, with organic meat containing less fat overall (P < 0.01). Meat was rich in cis-monounsaturated fatty acids, although organic meat contained less than did conventional meat (1850 vs. 2538 mg/100 g; P < 0.001). Organic meat was also lower (P < 0.001) in 18:3 n−3 (115 vs. 180 mg/100 g) and, whilst it contained more (P < 0.001) docosahexaenoic acid (30.9 vs. 13.7 mg/100 g), this was due to the large effect of one supermarket. This system by supermarket interaction suggests that poultry meat labelled as organic is not a guarantee of higher long chain n−3 fatty acids. Overall there were few major differences in fatty acid contents/profiles between organic and conventional meat that were consistent across all supermarkets
A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation
A new measurement of the cosmic ray antiproton-to-proton flux ratio between 1
and 100 GeV is presented. The results were obtained with the PAMELA experiment,
which was launched into low-earth orbit on-board the Resurs-DK1 satellite on
June 15th 2006. During 500 days of data collection a total of about 1000
antiprotons have been identified, including 100 above an energy of 20 GeV. The
high-energy results are a ten-fold improvement in statistics with respect to
all previously published data. The data follow the trend expected from
secondary production calculations and significantly constrain contributions
from exotic sources, e.g. dark matter particle annihilations.Comment: 10 pages, 4 figures, 1 tabl
Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin
The bone microenvironment is composed of niches that house cells across variable oxygen tensions. However, the
contribution of oxygen gradients in regulating bone and blood homeostasis remains unknown. Here, we generated
mice with either single or combined genetic inactivation of the critical oxygen-sensing prolyl hydroxylase (PHD)
enzymes (PHD1–3) in osteoprogenitors. Hypoxia-inducible factor (HIF) activation associated with Phd2 and Phd3
inactivation drove bone accumulation by modulating osteoblastic/osteoclastic cross-talk through the direct regulation
of osteoprotegerin (OPG). In contrast, combined inactivation of Phd1, Phd2, and Phd3 resulted in extreme HIF
signaling, leading to polycythemia and excessive bone accumulation by overstimulating angiogenic–osteogenic
coupling. Wealso demonstrate that genetic ablation of Phd2 and Phd3 was sufficient to protect ovariectomized mice
against bone loss without disrupting hematopoietic homeostasis. Importantly,we identify OPG as a HIF target gene
capable of directing osteoblast-mediated osteoclastogenesis to regulate bone homeostasis. Here, we show that coordinated
activation of specific PHD isoforms fine-tunes the osteoblastic response to hypoxia, thereby directing two
important aspects of bone physiology: cross-talk between osteoblasts and osteoclasts and angiogenic–osteogenic
coupling
Spatial Resolution of Double-Sided Silicon Microstrip Detectors for the PAMELA Apparatus
The PAMELA apparatus has been assembled and it is ready to be launched in a
satellite mission to study mainly the antiparticle component of cosmic rays. In
this paper the performances obtained for the silicon microstrip detectors used
in the magnetic spectrometer are presented. This subdetector reconstructs the
curvature of a charged particle in the magnetic field produced by a permanent
magnet and consequently determines momentum and charge sign, thanks to a very
good accuracy in the position measurements (better than 3 um in the bending
coordinate). A complete simulation of the silicon microstrip detectors has been
developed in order to investigate in great detail the sensor's characteristics.
Simulated events have been then compared with data gathered from minimum
ionizing particle (MIP) beams during the last years in order to tune free
parameters of the simulation. Finally some either widely used or original
position finding algorithms, designed for such kind of detectors, have been
applied to events with different incidence angles. As a result of the analysis,
a method of impact point reconstruction can be chosen, depending on both the
particle's incidence angle and the cluster multiplicity, so as to maximize the
capability of the spectrometer in antiparticle tagging.Comment: 28 pages, 18 figures, submitted to Nuclear Instruments and Methods in
Physics Research
PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy
The satellite-borne experiment PAMELA has been used to make a new measurement
of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which
extends previously published measurements down to 60 MeV and up to 180 GeV in
kinetic energy. During 850 days of data acquisition approximately 1500
antiprotons were observed. The measurements are consistent with purely
secondary production of antiprotons in the galaxy. More precise secondary
production models are required for a complete interpretation of the results.Comment: 11 pages, 3 figures, 1 table. Accepted for publication in Physical
Review Letter
Launch of the Space experiment PAMELA
PAMELA is a satellite borne experiment designed to study with great accuracy
cosmic rays of galactic, solar, and trapped nature in a wide energy range
protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study
of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50
MeV-270 GeV) and search for antimatter with a precision of the order of 10^-8).
The experiment, housed on board the Russian Resurs-DK1 satellite, was launched
on June, 15, 2006 in a 350*600 km orbit with an inclination of 70 degrees. The
detector is composed of a series of scintillator counters arranged at the
extremities of a permanent magnet spectrometer to provide charge,
Time-of-Flight and rigidity information. Lepton/hadron identification is
performed by a Silicon-Tungsten calorimeter and a Neutron detector placed at
the bottom of the device. An Anticounter system is used offline to reject false
triggers coming from the satellite. In self-trigger mode the Calorimeter, the
neutron detector and a shower tail catcher are capable of an independent
measure of the lepton component up to 2 TeV. In this work we describe the
experiment, its scientific objectives and the performance in the first months
after launch.Comment: Accepted for publication on Advances in Space Researc
- …
