36 research outputs found

    Regenerating agents (RGTAs): a new therapeutic approach

    No full text
    RGTAs, or ReGeneraTing Agents constitute a new class of medicinal substance that enhance both speed and quality of tissue healing and leading in some case to a real tissue regenerating process. RGTAs consist of chemically engineered polymers adapted to interact with and protect against proteolytic degradation of cellular signaling proteins known as growth factors, cytokines, interleukins, colony stimulating factors, chemokines, neurotrophic factors etc. Indeed almost all these proteins of cellular communication are naturally stored in the extra cellular matrix interacting specifically with the heparan sulfates or HS. After tissue injury of any cause, cells die liberating glycanases and proteases inducing first HS degradation then liberation of the cytokines which in turn are susceptible to degradation as they are no longer protected. By replacing the natural HS, RGTAs will protect cytokines from proteolyses as they are liberated from the matrix compartment matter in the wound. This spatio-temporal selective protection of cytokines results in a preservation of the natural endogenous signaling of a tissue and is reflected by spectacular tissue regeneration or by a very greatly improved tissue repair. These observations indicate that mammals have an unexpected ability to regenerate and that RGTA helps to reveal this capacity. The aim of OTR3 is to develop RGTA into a drug to treat specific tissue lesions

    Landscape

    No full text

    Heparin-like synthetic polymers, named RGTAs, mimic biological effects of heparin in vitro.

    No full text
    A family of biopolymers engineered to protect and stabilize heparin binding growth factors (HBGFs) show remarkable properties as wound healing agents in several in vivo tissue repair models to the extend that damaged tissues would recover almost its initial aspect and properties. These polymers where named RGTA for regenerating agents and proposed to act in vivo by enhancing the bioavailability of HBGFs at the site of the injury. To provide support for this hypothesis, we studied interaction of RGTA with FGF-2, taken as the paradigm of HBGFs, and its high- and low-affinity receptors as well as its ability to inhibit heparanase activity. We show that RGTA is comparable to heparin as it favors FGF-2 binding to FGFR-1 and FGF-2 dimerization and potentiates FGF-2-induced mitogenic activity. Furthermore, we show that RGTA inhibits the release of FGF-2 from its extracellular matrix storage sites by heparanase. Our data provide new evidence to support that RGTA may act in vivo both by enhancing HBGF activity and preserving HBGF availability by protecting the matrix low affinity heparan sulfates from rapid heparanase degradatio

    Significant reduction in neural adhesions after administration of the regenerating agent OTR4120, a synthetic glycosaminoglycan mimetic, after peripheral nerve injury in rats

    No full text
    Object. Extradural and intraneural scar formation after peripheral nerve injury frequently causes tethering and compression of the nerve as well as inhibition of axonal regeneration. Regenerating agents (RGTAs) mimic stabilizing and protective properties of sulphated glycosaminoglycan toward heparin-binding growth factors. The aim of this study was to assess the effect of an RGTA known as OTR4120 on extraneural fibrosis and axonal regeneration after crush injury in a rat sciatic nerve model. Methods. Thirty-two female Wistar rats underwent a standardized crush injury of the sciatic nerve. The animals were randomly allocated to RGTA treatment or sham treatment in a blinded design. To score neural adhesions, the force required to break the adhesions between the nerve and its Surrounding tissue was measured 6 weeks after nerve crush injury. To assess axonal regeneration, magnetoneurographic measurements were performed after 5 weeks. Static footprint analysis was performed preoperatively and at Days 1, 7, 14, 17, 21, 24, 28, 35, and 42 postoperatively. Results. The magnetoneurographic data show no significant difference in conduction capacity between the RGTA and the control group. In addition, results of the static footprint analysis demonstrate no improved or accelerated recovery pattern. However, the mean pullout force of the RGTA group (67 +/- 9 g [mean +/- standard error of the mean.]) was significantly (p < 0.001) lower than that of the control group (207 +/- 14 g [mean +/- standard error of the mean]). Conclusions. The RGTAs strongly reduce nerve adherence to surrounding tissue after nerve crush injury. (DOI: 10.3171/JNS/2008/109/11/0967

    Periodontitis destructions are restored by synthetic glycosaminoglycan mimetic.

    No full text
    Periodontitis are bacterium-driven inflammatory diseases that destroy tooth-supporting tissues whose complete restoration is not currently possible. RGTA(R), a new class of agents, have this capacity in an animal model. Periodontitis was induced in hamsters and, starting 8 weeks later, injected RG1503, a glycosaminoglycan synthesized from a 40 kDa dextran behaving like a heparan sulfate mimetic (1.5 mg kg(-1) w(-1)) or saline for 8 weeks. The three periodontium compartments were evaluated by immunohistochemistry and morphometry. The gingival extracellular matrix disorganized by inflammation was restoring under treatment. The collagen network was repaired and resumed its previous organization. Fibrillin-1 expression was restored so that the elastic network rebuilt at a distance from the pocket and began to reconstruct near the pocket. Apoptotic cell numbers were decreased in the pocket epithelium, and more so in the infiltrated connective tissue. The continuity and the thickness of the basement membrane were restored and testified normalization of epithelium connective tissue interaction. The amount of alveolar bone increased around the first molar, and the interradicular bone was rebuilt. The root cementum was thickened and the number of proliferating cells in the periodontal ligament was increased close to the cementum. RG1503 treatment induces potent anabolic reactions in the extracellular matrices of the different tissues of the periodontium and recruitment of progenitors. In particular, the cell proliferation close to the root surface suggests the reformation of a functional attachment apparatus. These results demonstrate that RG1503 reverses the degenerative changes induced by inflammation and favors the conditions of a regenerative process. Thus, RGTA, a known matrix component mimetic and protector, may be considered as a new therapeutic tool to regenerate the tissues destroyed by periodontitis
    corecore