108 research outputs found

    Payload crew interface design criteria and techniques. Task 1: Inflight operations and training for payloads

    Get PDF
    Guidelines are developed for use in control and display panel design for payload operations performed on the aft flight deck of the orbiter. Preliminary payload procedures are defined. Crew operational concepts are developed. Payloads selected for operational simulations were the shuttle UV optical telescope (SUOT), the deep sky UV survey telescope (DUST), and the shuttle UV stellar spectrograph (SUSS). The advanced technology laboratory payload consisting of 11 experiments was selected for a detailed evaluation because of the availability of operational data and its operational complexity

    Single-copy nuclear genes resolve the phylogeny of the holometabolous insects

    Get PDF
    Background: Evolutionary relationships among the 11 extant orders of insects that undergo complete metamorphosis, called Holometabola, remain either unresolved or contentious, but are extremely important as a context for accurate comparative biology of insect model organisms. The most phylogenetically enigmatic holometabolan insects are Strepsiptera or twisted wing parasites, whose evolutionary relationship to any other insect order is unconfirmed. They have been controversially proposed as the closest relatives of the flies, based on rDNA, and a possible homeotic transformation in the common ancestor of both groups that would make the reduced forewings of Strepsiptera homologous to the reduced hindwings of Diptera. Here we present evidence from nucleotide sequences of six single-copy nuclear protein coding genes used to reconstruct phylogenetic relationships and estimate evolutionary divergence times for all holometabolan orders. Results: Our results strongly support Hymenoptera as the earliest branching holometabolan lineage, the monophyly of the extant orders, including the fleas, and traditionally recognized groupings of Neuropteroidea and Mecopterida. Most significantly, we find strong support for a close relationship between Coleoptera (beetles) and Strepsiptera, a previously proposed, but analytically controversial relationship. Exploratory analyses reveal that this relationship cannot be explained by long-branch attraction or other systematic biases. Bayesian divergence times analysis, with reference to specific fossil constraints, places the origin of Holometabola in the Carboniferous (355 Ma), a date significantly older than previous paleontological and morphological phylogenetic reconstructions. The origin and diversification of most extant insect orders began in the Triassic, but flourished in the Jurassic, with multiple adaptive radiations producing the astounding diversity of insect species for which these groups are so well known. Conclusion: These findings provide the most complete evolutionary framework for future comparative studies on holometabolous model organisms and contribute strong evidence for the resolution of the 'Strepsiptera problem', a long-standing and hotly debated issue in insect phylogenetics

    9-Genes Reinforce the Phylogeny of Holometabola and Yield Alternate Views on the Phylogenetic Placement of Strepsiptera

    Get PDF
    Background: The extraordinary morphology, reproductive and developmental biology, and behavioral ecology of twisted wing parasites (order Strepsiptera) have puzzled biologists for centuries. Even today, the phylogenetic position of these enigmatic “insects from outer space” [1] remains uncertain and contentious. Recent authors have argued for the placement of Strepsiptera within or as a close relative of beetles (order Coleoptera), as sister group of flies (order Diptera), or even outside of Holometabola.Methodology/Principal Findings Here, we combine data from several recent studies with new data (for a total of 9 nuclear genes and ∼13 kb of aligned data for 34 taxa), to help clarify the phylogenetic placement of Strepsiptera. Our results unequivocally support the monophyly of Neuropteroidea ( = Neuropterida + Coleoptera) + Strepsiptera, but recover Strepsiptera either derived from within polyphagan beetles (order Coleoptera), or in a position sister to Neuropterida. All other supra-ordinal- and ordinal-level relationships recovered with strong nodal support were consistent with most other recent studies. Conclusions/Significance: These results, coupled with the recent proposed placement of Strepsiptera sister to Coleoptera, suggest that while the phylogenetic neighborhood of Strepsiptera has been identified, unequivocal placement to a specific branch within Neuropteroidea will require additional study.Organismic and Evolutionary Biolog

    Sex And Deposition Of The Holotype Of Bareogonalos canadensis

    No full text
    Volume: 91Start Page: 287End Page: 28

    Increasing processor performance by implementing deeper pipelines

    No full text

    Virtual register renaming

    No full text
    This paper presents a novel high performance substrate for building energy-efficient out-of-order superscalar cores. The architecture does not require a reorder buffer or physical registers for register renaming and instruction retirement. Instead, it uses a large number of virtual register IDs for register renaming, a physical register file of the same size as the logical register file, and checkpoints to bulk retire instructions and to recover from exceptions and branch mispredictions. By eliminating physical register renaming and the reorder buffer, the architecture not only eliminates complex power hungry hardware structures, but also reduces reorder buffer capacity stalls when execution encounters long delays from data cache misses, thus improving performance. The paper presents performance and power evaluation of this new architecture using Spec 2006 benchmarks. The performance data was collected using an x86 ASIM-based performance simulator from Intel Labs. The data shows that the new architecture improves performance of a 2-wide out-of-order x86 processor core by an average of 4.2percent, while saving 43percent of the energy consumption of the reorder buffer and retirement register file functional block. © 2013 Springer-Verlag

    Overwintering of Phryganidia californica in the Oregon Cascades and notes on its parasitoids (Lepidoptera: Dioptidae)

    No full text
    Volume: 65Start Page: 74End Page: 7
    corecore