168 research outputs found

    Lock-in detection using a cryogenic low noise looped current preamplifier for the readout of resistive bolometers

    Full text link
    We implemented a low noise current preamplifier for the readout of resistive bolometers. We tested the apparatus on thermometer resistances ranging from 10 Ohm to 500 Mohm. The use of current preamplifier overcomes constraints introduced by the readout time constant due to the thermometer resistance and the input capacitance. Using cold JFETs, this preamplifier board is shown to have very low noise: the Johnson noise of the source resistor (1 fA/Hz1/2) dominated in our noise measurements. We also implemented a lock-in chain using this preamplifier. Because of fast risetime, compensation of the phase shift may be unnecessary. If implemented, no tuning is necessary when the sensor impedance changes. Transients are very short, and thus low-passing or sampling of the signal is simplified. In case of spurious noise, the modulation frequency can be chosen in a much wider frequency range, without requiring a new calibration of the apparatus.Comment: 18 pages, 7 figures, Accepted in NIM

    Analysing Port Community System Network Evolution

    Get PDF
    Ports have played an important role in facilitating exchanges among countries since the day when inland transportation was poor. As ports become hubs for global supply chain, they have to maintain their competitiveness not only by reassuring their efficiency, reliability, accessibility to hinterland, and sustainability. In addition, there is a constant challenge from all operational parties of the port to acquire needed information or to trust information received, due to multiple legacy systems and platforms that do not integrate with each other, and to the lack of real time updates. There are differing agendas between parties and, sometimes, distrust within the multi-stakeholder ecosystem leads to working in silos. This jeopardises seamless data exchange and cooperation across the port value chain, resulting in significant inefficiencies. Port community system (PCS) can enhance communication and simplify administrative process resulting economic and environmental benefit for actors in the supply chain. The invisibility of the benefit, actors’ heterogeneity and significant investment to develop the system resulting a reluctance in implementing PCS. This chapter aims to study the evolution mechanism behind the process of PCS network development using lessons learned from industrial symbiosis network development and network trajectories theory. The PCS network development follows a serendipitous and goal-oriented process that can be categorised into three stages: pre-PCS network, PCS network emergence, and PCS network expansion. This chapter contributes to the exploration of network evolution and documents lesson learned to foster PCS implementation.© 2020 Springer. This is a post-peer-review, pre-copyedit version of an article published in European Port Cities in Transition: Moving Towards More Sustainable Sea Transport Hubs. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-36464-9_10fi=vertaisarvioitu|en=peerReviewed

    Soil warming increases the number of growing bacterial taxa but not their growth rates

    Get PDF
    Soil microorganisms control the fate of soil organic carbon. Warming may accelerate their activities putting large carbon stocks at risk of decomposition. Existing knowledge about microbial responses to warming is based on community-level measurements, leaving the underlying mechanisms unexplored and hindering predictions. In a long-term soil warming experiment in a Subarctic grassland, we investigated how active populations of bacteria and archaea responded to elevated soil temperatures (+6°C) and the influence of plant roots, by measuring taxon-specific growth rates using quantitative stable isotope probing and 18O water vapor equilibration. Contrary to prior assumptions, increased community growth was associated with a greater number of active bacterial taxa rather than generally faster-growing populations. We also found that root presence enhanced bacterial growth at ambient temperatures but not at elevated temperatures, indicating a shift in plant-microbe interactions. Our results, thus, reveal a mechanism of how soil bacteria respond to warming that cannot be inferred from community-level measurements

    Application of monte carlo calculation for the virtual calibration of a low-energy in vivo counting system

    No full text
    Internal dose assessment can be derived from the measurement of retained activity in the whole body or in an organ at a given time. In radiation protection, this assessment, so-called in vivo measurement, is performed by an external measurement of the subject with germanium detectors (in most cases). Calibration of these detectors is ensured by anthropomorphic phantoms which, for technical reasons, can only provide rough representations of human. It is especially the case for the chest phantoms used in lung counting, subject of this paper. This leads to substantial corrections on calibration factors that are particularly crucial and delicate in low-energy in vivo measurements, resulting in important systematic errors. In order to improve calibration, former work based on numerical phantoms associated with Monte Carlo computing techniques has already proven its benefits. To go further, a Graphical User Interface called "OEDIPE", a French acronym for "tool for internal personalized dose assessment", has been developing at the IRSN internal dose assessment laboratory, simulating real measurements using person-specific computational phantoms in association with MCNP calculation code. The study presented here is dedicated to the implementation and validation of a real in vivo monitoring system (AREVA/COGEMA Marcoule, France) equipped with 4 high purity germanium (HPGe) detectors. After modeling the facility and measurement geometry using OEDIPE (design and positioning of the detectors. . .), validation with different configurations was carried out in two steps: first with point sources (different nuclides, different source-detector distances) and then with the Livermore calibration phantom (different overlay plates, lungs contaminated with 241Am and a mixture of actinides). The final goal is to approach a personalized numerical calibration of the facilities in order to improve dose assessment, as the use of physical phantoms for calibration induces large uncertainties. Such application could be an opening door on a better activity assessment in nuclear medicine, especially in personalized dosimetry in radioimmunotherapy. © 2005 IEEE

    Rofecoxib versus Magnesium Sulfate to Arrest Preterm Labor

    Full text link
    corecore