17 research outputs found

    An Intron-Retaining Splice Variant of Human Cyclin A2, Expressed in Adult Differentiated Tissues, Induces a G1/S Cell Cycle Arrest In Vitro

    Get PDF
    BACKGROUND: Human cyclin A2 is a key regulator of S phase progression and entry into mitosis. Alternative splice variants of the G1 and mitotic cyclins have been shown to interfere with full-length cyclin functions to modulate cell cycle progression and are therefore likely to play a role in differentiation or oncogenesis. The alternative splicing of human cyclin A2 has not yet been studied. METHODOLOGY/PRINCIPAL FINDINGS: Sequence-specific primers were designed to amplify various exon-intron regions of cyclin A2 mRNA in cell lines and human tissues. Intron retaining PCR products were cloned and sequenced and then overexpressed in HeLa cells. The subcellular localization of the splice variants was studied using confocal and time-lapse microscopy, and their impact on the cell cycle by flow cytometry, immunoblotting and histone H1 kinase activity. We found a splice variant of cyclin A2 mRNA called A2V6 that partly retains Intron 6. The gene expression pattern of A2V6 mRNA in human tissues was noticeably different from that of wild-type cyclin A2 (A2WT) mRNA. It was lower in proliferating fetal tissues and stronger in some differentiated adult tissues, especially, heart. In transfected HeLa cells, A2V6 localized exclusively in the cytoplasm whereas A2WT accumulated in the nucleus. We show that A2V6 induced a clear G1/S cell cycle arrest associated with a p21 and p27 upregulation and an inhibition of retinoblastoma protein phosphorylation. Like A2WT, A2V6 bound CDK2, but the A2V6/CDK2 complex did not phosphorylate histone H1. CONCLUSION/SIGNIFICANCE: This study has revealed that some highly differentiated human tissues express an intron-retaining cyclin A2 mRNA that induced a G1/S block in vitro. Contrary to full-length cyclin A2, which regulates cell proliferation, the A2V6 splice variant might play a role in regulating nondividing cell states such as terminal differentiation or senescence

    Transforming growth factor-β type-II receptor signalling : intrinsic/associated casein kinase activity, receptor interactions and functional effects of blocking antibodies

    No full text
    The transforming growth factor β (TGF-β) family of growth factors control proliferation, extracellular matrix synthesis and\ or differentiation in a wide variety of cells. However, the molecular mechanisms governing ligand binding, receptor oligomerization and signal transduction remain incompletely understood. In this study, we utilized a set of antibodies selective for the extracellular and intracellular domains of the TGF-β type-II receptor as probes to investigate the intrinsic kinase activity of this receptor and its physical association in multimeric complexes with type-I and type-III receptors. The type-II receptor immunoprecipitated from human osteosarcoma cells exhibited autophosphorylation and casein kinase activity that was markedly stimulated by polylysine yet was insensitive to heparin. Affinity crosslinking of "#&I-TGF-β1 ligand to cellular receptors followed by specific immunoprecipitation demonstrated that type-II receptors form stable complexes with both type-I and type-III receptors expressed on the surfaces of both human osteosarcoma cells an
    corecore