7,069 research outputs found

    About the initial mass function and HeII emission in young starbursts

    Get PDF
    We demonstrate that it is crucial to account for the evolution of the starburst population in order to derive reliable numbers of O stars from integrated spectra for burst ages t > 2 - 3 Myr. In these cases the method of Vacca & Conti (1992) and Vacca (1994) systematically underestimates the number of O stars. Therefore the current WR/O number ratios in Wolf-Rayet (WR) galaxies are overestimated. This questions recent claims about flat IMF slopes (alpha ~ 1-2) in these objects. If the evolution of the burst is properly treated we find that the observations are indeed compatible with a Salpeter IMF, in agreement with earlier studies. Including recent predictions from non-LTE, line blanketed model atmospheres which account for stellar winds, we synthesize the nebular and WR HeII 4686 emission in young starbursts. For metallicities 1/5 <= Z/Z_sun <= 1 we predict a strong nebular HeII emission due to a significant fraction of WC stars in early WR phases of the burst. For other metallicities broad WR emission will always dominate the HeII emission. Our predictions of the nebular HeII intensity agree well with the observations in WR galaxies and an important fraction of the giant HII regions where nebular HeII is detected. We propose further observational tests of our result.Comment: ApJ Letters, accepted. 8 pages LaTeX including 3 PostScript figures, uses AASTeX and psfig macros. PostScript file also available at ftp://ftp.stsci.edu/outside-access/out.going/schaerer/imf.p

    Dirty blackholes: Thermodynamics and horizon structure

    Full text link
    Considerable interest has recently been expressed in (static spherically symmetric) blackholes in interaction with various classical matter fields (such as electromagnetic fields, dilaton fields, axion fields, Abelian Higgs fields, non--Abelian gauge fields, {\sl etc}). A common feature of these investigations that has not previously been remarked upon is that the Hawking temperature of such systems appears to be suppressed relative to that of a vacuum blackhole of equal horizon area. That is: kTH/(4πrH)/4πAHk T_H \leq \hbar/(4\pi r_H) \equiv \hbar/\sqrt{4\pi A_H}. This paper will argue that this suppression is generic. Specifically, it will be shown that kTH=4πrH  eϕ(rH)  (18πG  ρH  rH2). k T_H = {\hbar\over4\pi r_H} \; e^{-\phi(r_H)} \; \left( 1 - 8\pi G \; \rho_H \; r_H^2 \right). Here ϕ(rH)\phi(r_H) is an integral quantity, depending on the distribution of matter, that is guaranteed to be positive if the Weak Energy Condition is satisfied. Several examples of this behaviour will be discussed. Generalizations of this behaviour to non--symmetric non--static blackholes are conjectured.Comment: [minor revisions] 22 pages, RevTe

    Low State, Phase-Resolved IR Spectroscopy of VV Puppis

    Full text link
    We present phase-resolved low resolution JHKJHK and higher resolution KK-band spectroscopy of the polar VV Pup. All observations were obtained when VV Pup was in a low accretion state having a K magnitude near 15. The low resolution observations reveal cyclotron emission in the JJ band during some phases, consistent with an origin near the active 30.5 MG pole on the white dwarf. The secondary in VV Pup appears to be a normal M7V star and we find that the HH and KK band fluxes are entirely due to this star at all orbital phases during the low accretion state. We use our higher resolution Keck spectroscopy to produce the first KK-band radial velocity curve for VV Pup. Our orbital solution yields K2K_2=414±27\pm27 km sec1^{-1} and leads to mass estimates of M1_1=0.73±\pm0.05 M_{\odot} and M2_2=0.10±\pm0.02 M_{\odot}. We find that the mass accretion rates during the normal low states of the polars VV Pup, EF Eri, and EQ Cet are near 1013^{-13} M_{\odot} yr1^{-1}. The fact that \.M is not zero in low state polars indicates active secondary stars in these binary systems, including the sub-stellar donor star present in EF Eri.Comment: Accepted in Astronomical Journal 5 figure

    Steady state properties of a driven granular medium

    Full text link
    We study a two-dimensional granular system where external driving force is applied to each particle in the system in such a way that the system is driven into a steady state by balancing the energy input and the dissipation due to inelastic collision between particles. The velocities of the particles in the steady state satisfy the Maxwellian distribution. We measure the density-density correlation and the velocity-velocity correlation functions in the steady state and find that they are of power-law scaling forms. The locations of collision events are observed to be time-correlated and such a correlation is described by another power-law form. We also find that the dissipated energy obeys a power-law distribution. These results indicate that the system evolves into a critical state where there are neither characteristic spatial nor temporal scales in the correlation functions. A test particle exhibits an anomalous diffusion which is apparently similar to the Richardson law in a three-dimensional turbulent flow.Comment: REVTEX, submitted to Phys. Rev.

    Singularities In Scalar-Tensor Cosmologies

    Get PDF
    In this article, we examine the possibility that there exist special scalar-tensor theories of gravity with completely nonsingular FRW solutions. Our investigation in fact shows that while most probes living in such a Universe never see the singularity, gravity waves always do. This is because they couple to both the metric and the scalar field, in a way which effectively forces them to move along null geodesics of the Einstein conformal frame. Since the metric of the Einstein conformal frame is always singular for configurations where matter satisfies the energy conditions, the gravity wave world lines are past inextendable beyond the Einstein frame singularity, and hence the geometry is still incomplete, and thus singular. We conclude that the singularity cannot be entirely removed, but only be made invisible to most, but not all, probes in the theory.Comment: 23 pages, latex, no figure

    The Chagos Islands cases: the empire strikes back

    Get PDF
    Good governance requires the accommodation of multiple interests in the cause of decision making. However, undue regard for particular sectional interests can take their toll upon public faith in government administration. Historically, broad conceptions of the good of the commonwealth were employed to outweigh the interests of groups that resisted colonisation. In the decision making of the British Empire, the standard approach for justifying the marginalisation of the interests of colonised groups was that they were uncivilised and that particular hardships were the price to be paid for bringing to them the imperial dividend of industrial society. It is widely assumed that with the dismantling of the British Empire, such impulses and their accompanying jurisprudence became a thing of the past. Even as decolonisation proceeded apace after the Second World War, however, the United Kingdom maintained control of strategically important islands with a view towards sustaining its global role. In an infamous example from this twilight period of empire, in the 1960s imperial interests were used to justify the expulsion of the Chagos islanders from the British Indian Ocean Territory (BIOT). Into the twenty-first century, this forced elision of the UK’s interests with the imperial “common good” continues to take centre stage in courtroom battles over the islanders’ rights, being cited before domestic and international tribunals in order to maintain the Chagossians’ exclusion from their homeland. This article considers the new jurisprudence of imperialism which has emerged in a string of decisions which have continued to marginalise the Chagossians’ interests

    Rheophysics of dense granular materials : Discrete simulation of plane shear flows

    Full text link
    We study the steady plane shear flow of a dense assembly of frictional, inelastic disks using discrete simulation and prescribing the pressure and the shear rate. We show that, in the limit of rigid grains, the shear state is determined by a single dimensionless number, called inertial number I, which describes the ratio of inertial to pressure forces. Small values of I correspond to the quasi-static regime of soil mechanics, while large values of I correspond to the collisional regime of the kinetic theory. Those shear states are homogeneous, and become intermittent in the quasi-static regime. When I increases in the intermediate regime, we measure an approximately linear decrease of the solid fraction from the maximum packing value, and an approximately linear increase of the effective friction coefficient from the static internal friction value. From those dilatancy and friction laws, we deduce the constitutive law for dense granular flows, with a plastic Coulomb term and a viscous Bagnold term. We also show that the relative velocity fluctuations follow a scaling law as a function of I. The mechanical characteristics of the grains (restitution, friction and elasticity) have a very small influence in this intermediate regime. Then, we explain how the friction law is related to the angular distribution of contact forces, and why the local frictional forces have a small contribution to the macroscopic friction. At the end, as an example of heterogeneous stress distribution, we describe the shear localization when gravity is added.Comment: 24 pages, 19 figure

    Surface Visualisation of Tissue Interfaces by Scanning Electron Microscopy. Methods for Exposure of the Basal Lamina and Associated Structures in Human Amnion

    Get PDF
    Tissue interfaces such as basal lamina have been traditionally investigated in transmission electron microscopy by sections cut vertical to the lamina, presenting information restricted to a single ultrathin plane. In order to overcome this limitation, a methodology for surface visualisation of the underside cell membranes of the amniotic epithelium, the upper and lower basal lamina surfaces, and their relationship to the stromal collagen has been devised. This involves alkaline, detergent or enzymatic loosening and/or removal of the epithelial monolayer prior to fixation, followed by dry fracture after critical point drying. In this way we have visualised large areas of all interfaces and the inter-relationships between these elements during the process of stromal collagen production by the amniotic epithelial cells

    Engaging Undergraduates in Science Research: Not Just About Faculty Willingness.

    Get PDF
    Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members' decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty members' likelihood of engaging undergraduates in their research project(s). Using data from the Higher Education Research Institute's 2007-2008 Faculty Survey, we employ hierarchical generalized linear modeling to analyze data from 4,832 science, technology, engineering, and mathematics (STEM) faculty across 194 institutions to examine how organizational citizenship behavior theory and social exchange theory relate to mentoring students in research. Key findings show that faculty who work in the life sciences and those who receive government funding for their research are more likely to involve undergraduates in their research project(s). In addition, faculty at liberal arts or historically Black colleges are significantly more likely to involve undergraduate students in research. Implications for advancing undergraduate research opportunities are discussed
    corecore