126,277 research outputs found
Generating Robust and Efficient Networks Under Targeted Attacks
Much of our commerce and traveling depend on the efficient operation of large
scale networks. Some of those, such as electric power grids, transportation
systems, communication networks, and others, must maintain their efficiency
even after several failures, or malicious attacks. We outline a procedure that
modifies any given network to enhance its robustness, defined as the size of
its largest connected component after a succession of attacks, whilst keeping a
high efficiency, described in terms of the shortest paths among nodes. We also
show that this generated set of networks is very similar to networks optimized
for robustness in several aspects such as high assortativity and the presence
of an onion-like structure
Raising awareness for water polution based on game activities using internet of things
Awareness among young people regarding the environment and its resources and comprehension of the various factors that interplay, is key to changing human behaviour towards achieving a sustainable planet. In this paper IoT equipment, utilizing sensors for measuring various parameters of water quality, is used in an educational context targeting at a deeper understanding of the use of natural resources towards the adoption of environmentally friendly behaviours. We here note that the use of water sensors in STEM gameful learning is an area which has not received a lot of attention in the previous years. The IoT water sensing and related scenaria and practices, addressing children via discovery, gamification, and educational activities, are discussed in detail
Recommended from our members
Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling.
BACKGROUND:Rhizosphere microbial communities are key regulators of plant performance, yet few studies have assessed the impact of different management approaches on the rhizosphere microbiomes of major crops. Rhizosphere microbial communities are shaped by interactions between agricultural management and host selection processes, but studies often consider these factors individually rather than in combination. We tested the impacts of management (M) and rhizosphere effects (R) on microbial community structure and co-occurrence networks of maize roots collected from long-term conventionally and organically managed maize-tomato agroecosystems. We also explored the interaction between these factors (M × R) and how it impacts rhizosphere microbial diversity and composition, differential abundance, indicator taxa, co-occurrence network structure, and microbial nitrogen-cycling processes. RESULTS:Host selection processes moderate the influence of agricultural management on rhizosphere microbial communities, although bacteria and fungi respond differently to plant selection and agricultural management. We found that plants recruit management-system-specific taxa and shift N-cycling pathways in the rhizosphere, distinguishing this soil compartment from bulk soil. Rhizosphere microbiomes from conventional and organic systems were more similar in diversity and network structure than communities from their respective bulk soils, and community composition was affected by both M and R effects. In contrast, fungal community composition was affected only by management, and network structure only by plant selection. Quantification of six nitrogen-cycling genes (nifH, amoA [bacterial and archaeal], nirK, nrfA, and nosZ) revealed that only nosZ abundance was affected by management and was higher in the organic system. CONCLUSIONS:Plant selection interacts with conventional and organic management practices to shape rhizosphere microbial community composition, co-occurrence patterns, and at least one nitrogen-cycling process. Reframing research priorities to better understand adaptive plant-microbe feedbacks and include roots as a significant moderating influence of management outcomes could help guide plant-oriented strategies to improve productivity and agroecosystem sustainability
Institutional Effects in a Simple Model of Educational Production
This paper presents a model of educational production that tries to make sense of recent evidence on effects of institutional arrangements on student performance. In a simple principal-agent framework, students choose their learning effort to maximize their net benefits, while the government chooses educational spending to maximize its net benefits. In the jointly determined equilibrium, schooling quality is shown to depend on several institutionally determined parameters. The impact on student performance of institutions such as central examinations, centralization versus school autonomy, teachers\u27 influence, parental influence, and competition from private schools is analyzed. Furthermore, the model can rationalize why positive resource effects may be lacking in educational production
Report of Acoustic Test on PSLV IS.1/2L Structure
The results of acoustic conducted on PSLV IS.1/2L at Acoustic Test Facility are briefly given. It contains test set up,
Instrumentation details and tables of spectral response
Generalized hidden symmetries and the Kerr-Sen black hole
We elaborate on basic properties of generalized Killing-Yano tensors which
naturally extend Killing-Yano symmetry in the presence of skew-symmetric
torsion. In particular, we discuss their relationship to Killing tensors and
the separability of various field equations. We further demonstrate that the
Kerr-Sen black hole spacetime of heterotic string theory, as well as its
generalization to all dimensions, possesses a generalized closed conformal
Killing-Yano 2-form with respect to a torsion identified with the 3-form
occuring naturally in the theory. Such a 2-form is responsible for complete
integrability of geodesic motion as well as for separability of the scalar and
Dirac equations in these spacetimes.Comment: 33 pages, no figure
Antibody localization in horse, rabbit, and goat antilymphocyte sera
The localization of antibodies was studied in rabbit, goat, and horse ALS raised by weekly immunization with canine or human spleen cells for 4 to 12 weeks. A combination of analytic techniques was used including column chromatography, electrophoresis, immunoelectrophoresis, determination of protein concentration, and measurement of antibody titers. In the rabbit and goat ALS, virtually all of the leukoagglutinins and lymphocytotoxins were in the easily separable IgG; accidentally induced thromboagglutinins were in the same location. In the rabbit hemagglutinins were found in both the IgG and IgM, whereas in the goat these were almost exclusively in the IgM. The antiwhite cell antibodies were most widely distributed in the horse. The cytotoxins were primarily in the IgG, but the leukoagglutinins were most heavily concentrated in the T-equine globulin which consists mostly of IgA. By differential ammonium sulfate precipitation of a horse antidoglymphocyte serum, fractions were prepared that were rich in IgG and IgA. Both were able to delay the rejection of canine renal homografts, the IgA-rich preparation to a somewhat greater degree. The findings in this study have been discussed in relation to the refining techniques that have been used for the production of globulin from heterologous ALS. © 1970
Demonstration of astrocytes in cultured amniotic fluid cells of three cases with neural-tube defect
We have investigated the origin of rapidly adhering (RA) cells in three cases of neural tube defects (two anencephali, one encephalocele). We were able to demonstrate the presence of glial fibrillary acidic (GFA) protein in variable percentages (4–80%) of RA cells cultured for 4–6 days by use of indirect immunofluorescence with GFA antiserum. Cells cultured from amniotic fluids of normal pregnancies and fetal fibroblasts were completely GFA protein negative. GFA protein is well established as a highly specific marker for astrocytes. Demonstration of astrocytes may prove to be a criterion of high diagnostic value for neural tube defects. The percentage of astrocytes decreased with increasing culture time, while the percentage of fibronectin positive cells increased both in amniotic fluid cell cultures from neural tube defects and normal pregnancies
Recommended from our members
propnet: A Knowledge Graph for Materials Science
Discovering the ideal material for a new application involves determining its numerous properties, such as electronic, mechanical, or thermodynamic, to match those of its desired application. The rise of high-throughput computation has meant that large databases of material properties are now accessible to scientists. However, these databases contain far more information than might appear at first glance, since many relationships exist in the materials science literature to derive, or at least approximate, additional properties. propnet is a new computational framework designed to help scientists to automatically calculate additional information from their datasets. It does this by constructing a network graph of relationships between different materials properties and traversing this graph. Initially, propnet contains a catalog of over 100 property relationships but the hope is for this to expand significantly in the future, and contributions from the community are welcomed
- …
