122,425 research outputs found

    The micrometeoroid experiment on the OGO 2 satellite

    Get PDF
    Micrometeoroids in earths dust cloud obtained from OGO-B satellit

    Are Galaxies Optically Thin to Their Own Lyman Continuum Radiation? II. NGC 6822

    Full text link
    Halpha and UBV photometry of NGC 6822 are used to study the distribution of OB stars and HII regions in the galaxy and to determine whether individual regions of the galaxy are in a state of ionization balance. Four distinct components of the Halpha emission (bright, halo, diffuse and field) differentiated by their surface brightnesses are identified. We find that approximately 1/2 of all OB stars in NGC 6822 are located in the field while only 1/4 are found in the combined bright and halo regions, suggesting that OB stars spend roughly 3/4 of their lifetimes outside ``classical'' H II regions. Comparing the observed Halpha emission with that predicted from stellar ionizing flux models, we find that although the bright, halo and diffuse regions are probably in ionization balance, the field region is producing at least 6 times as much ionizing flux as is observed. The ionization balance results in NGC 6822 suggest that star formation rates obtained from Halpha luminosities must underestimate the true star formation rate in this galaxy by about 50%. Comparing our results for NGC 6822 with previous results for the spiral galaxy M33, we find that the inner kiloparsec of M33 is in a more serious state of ionization imbalance, perhaps due to its higher surface density of blue stars.Comment: Replaced version should now compile with standard aastex style files. 28 pages, aastex preprint format. Accepted in ApJ. Hardcopies of figures available on request to [email protected]

    The Star Formation Histories and Efficiencies of Two Giant HII Regions in M33

    Get PDF
    UBVUBV photometry is used to re-identify the OB associations which power the two most luminous HII regions in M33, NGC 604 and NGC 595. There is a significant difference (2-3 Myr) in the ages of the most recent star formation episode in these two regions, while NGC 595 also has undergone a prior episode of star formation (10-15 Myr ago). These data, combined with the presence of molecular clouds in the heart of NGC 604, suggest that molecular clouds may survive at least one intense episode of massive star formation. The star formation efficiencies (mass of stars per mass of gas) of these two HII regions are up to a factor of 3 larger than the average efficiency in the inner disk of M33 or in Galactic molecular clouds, but are still only 2-5\%.Comment: 26 pages including 2 figures, uuencoded compressed postscript file (Figure 1 not available electronically). Accepted to Ap

    Critical velocity ionisation in substellar atmospheres

    Get PDF
    The observation of radio, X-ray and Hα emission from substellar objects indicates the presence of plasma regions and associated high-energy processes in their surrounding envelopes. This paper numerically simulates and characterises Critical Velocity Ionisation, a potential ionisation process, that can efficiently generate plasma as a result of neutral gas flows interacting with seed magnetized plasmas. By coupling a Gas-MHD interactions code (to simulate the ionisation mechanism) with a substellar global circulation model (to provide the required gas flows) we quantify the spatial extent of the resulting plasma regions, their degree of ionisation and their lifetime for a typical substellar atmosphere. It is found that the typical average ionisation fraction reached at equilibrium (where the ionisation and recombination rates are equal and opposite) ranges from 10-5 to 10-8, at pressures between 10-1 and 10-3 bar, with a trend of increasing ionisation fraction with decreasing atmospheric pressure. The ionisation fractions reached as a result of Critical Velocity Ionisation are sufficient to allow magnetic fields to couple to gas flows in the atmosphere

    Pushing the precision limit of ground-based eclipse photometry

    Full text link
    Until recently, it was considered by many that ground-based photometry could not reach the high cadence sub-mmag regime because of the presence of the atmosphere. Indeed, high frequency atmospheric noises (mainly scintillation) limit the precision that high SNR photometry can reach within small time bins. If one is ready to damage the sampling of his photometric time-series, binning the data (or using longer exposures) allows to get better errors, but the obtained precision will be finally limited by low frequency noises. To observe several times the same planetary eclipse and to fold the photometry with the orbital period is thus generally considered as the only option to get very well sampled and precise eclipse light curve from the ground. Nevertheless, we show here that reaching the sub-mmag sub-min regime for one eclipse is possible with a ground-based instrument. This has important implications for transiting planets characterization, secondary eclipses measurement and small planets detection from the ground.Comment: Transiting Planets Proceeding IAU Symposium No.253, 2008. 7 pages, 4 figure
    corecore