10,290 research outputs found
Multi-parton correlations and "exclusive" cross sections
In addition to the inclusive cross sections discussed within the QCD-parton
model, in the regime of multiple parton interactions, different and more
exclusive cross sections become experimentally viable and may be suitably
measured. Indeed, in its study of double parton collisions, the quantity
measured by CDF was an "exclusive" rather than an inclusive cross section. The
non perturbative input to the "exclusive" cross sections is different with
respect to the non perturbative input of the inclusive cross sections and
involves correlation terms of the hadron structure already at the level of
single parton collisions. The matter is discussed in details keeping explicitly
into account the effects of double and of triple parton collisions.Comment: 18 pages, no figures, corrected typo
Jet Trimming
Initial state radiation, multiple interactions, and event pileup can
contaminate jets and degrade event reconstruction. Here we introduce a
procedure, jet trimming, designed to mitigate these sources of contamination in
jets initiated by light partons. This procedure is complimentary to existing
methods developed for boosted heavy particles. We find that jet trimming can
achieve significant improvements in event reconstruction, especially at high
energy/luminosity hadron colliders like the LHC.Comment: 20 pages, 11 figures, 3 tables - Minor changes to text/figure
The Theory of the Nucleon Spin
I discuss two topics of current interest in the study of the spin structure
of the nucleon. First, I discuss whether there is a sum rule for the components
of the nucleon's angular moments. Second, I discuss the measurement of the
nucleon's transversity distribution in light of recent results reported by the
HERMES collaboration at DESY.Comment: 15 pages, 8 figures, LaTeX using rspublic.cls and BoxedEPS macros; as
submitted to Phil Trans A of the Royal Society for forthcoming volume: The
Quark Structure of Matter; email correspondence to [email protected]
A proposed DAQ system for a calorimeter at the International Linear Collider
This note describes R&D to be carried out on the data acquisition system for
a calorimeter at the future International Linear Collider. A generic
calorimeter and data acquisition system is described. Within this framework
modified designs and potential bottlenecks within the current system are
described. Solutions leading up to a technical design report will to be carried
out within CALICE-UK groups.Comment: 13 pages, 4 figure
The mass area of jets
We introduce a new characteristic of jets called mass area. It is defined so
as to measure the susceptibility of the jet's mass to contamination from soft
background. The mass area is a close relative of the recently introduced
catchment area of jets. We define it also in two variants: passive and active.
As a preparatory step, we generalise the results for passive and active areas
of two-particle jets to the case where the two constituent particles have
arbitrary transverse momenta. As a main part of our study, we use the mass area
to analyse a range of modern jet algorithms acting on simple one and
two-particle systems. We find a whole variety of behaviours of passive and
active mass areas depending on the algorithm, relative hardness of particles or
their separation. We also study mass areas of jets from Monte Carlo simulations
as well as give an example of how the concept of mass area can be used to
correct jets for contamination from pileup. Our results show that the
information provided by the mass area can be very useful in a range of
jet-based analyses.Comment: 36 pages, 12 figures; v2: improved quality of two plots, added entry
in acknowledgments, nicer form of formulae in appendix A; v3: added section
with MC study and pileup correction, version accepted by JHE
Evaluation of key geometrical and mechanical properties for remote laser welded AC-170PX aluminium joints
Use of lightweight materials to produce automotive body structures is one of the key trends adopted by automotive manufacturers to minimise emission of greenhouse gases, and subsequently, reduction of fuel consumption. Aluminium alloys are one of the promising lightweight materials which are increasingly used for automotive body-in-white structures. Such applications demand both efficient and effective joining/welding methods to produce repeatable, durable and strong joints without significant alteration of material properties. Remote laser welding (RLW) is an emerging joining technology and increasingly being used to produce lightweight joints as it satisfies the demand for high production throughput at low cost. This paper investigates the effects of process parameters when seam tracking remote laser welding is used to create an autogenous fillet edge weld of automotive grade aluminum alloy (AC-170PX) in lap configuration without shielding gas. The effects of laser power and welding speed on the key geometric features are reported together with details of the weld microstructure. Joint strength is evaluated by performing a lap shear test. It is found that the laser power and welding speed have dominant influence on key geometric features and subsequently on the lap shear strength. Relatively larger grain size in the fusion zone reduces the microhardness by up to 20% in comparison with the base material
New Candidate Interstellar Particle in Stardust IS Aerogel Collector: Analysis by STXM and Ptychography
The Stardust Interstellar Preliminary Examination (ISPE) reported in 2014 the discovery of 7 probable contemporary interstellar (IS) particles captured in Stardust IS Collector aerogel and foils. The ISPE reports represented work done over 6 years by more than 60 scientists and >30,000 volunteers, which emphasizes the challenge identifying and analyzing Stardust IS samples was far beyond the primary Stardust cometary collection. We present a new potentially interstellar particle resulting from a continuation of analyses of the IS aerogel collection
- …
