84 research outputs found

    Characterizing persistent Developmental Dyscalculia: A cognitive neuroscience approach

    Get PDF
    Developmental dyscalculia (DD) is a specific learning disorder of calculation abilities. In the present thesis I report a series behavioural and functional neuroimaging studies to further elucidate the core numerical deficits underlying DD. I recruited a sample of children with DD who demonstrated persistent impairments in arithmetic. In Chapter 2, to validate the selection criteria, I compared the performance of children with and without persistent DD on a test of numerical magnitude processing. The data showed that only children with persistent DD presented with deficits in numerical magnitude processing, while those with inconsistent DD perform at the level of age-matched typically developing (TD) controls. In Chapter 3, I compared the performance of children with persistent DD on tasks assessing symbolic (e.g. Arabic digits) and non-symbolic (e.g. dot arrays) processing skills. Children with DD performed significantly worse on symbolic but not non-symbolic numerical magnitude processing tasks. These findings suggest that DD arises not from a format-independent magnitude processing deficit, but rather from difficulties in processing symbolic number representations. In Chapter 4, I investigated the influence of non-numerical variables (e.g. size) on non-symbolic numerical magnitude processing in children with and without DD. Children with DD were found to exhibit deficits in non-symbolic processing only when the visual perceptual cues were anticorrelated with numerical magnitude. When numerical magnitude and area were congruent no group differences in performance emerged. Therefore, rather than presenting with a core deficit in non-symbolic processing, children with DD have difficulties in disentangling numerical and non-numerical cues. In Chapter 5, I used functional neuroimaging to investigate whether children with DD exhibit atypical brain activation during numerical magnitude processing (symbolic, non-symbolic and mixed comparison). The data from this study revealed atypical cortical activity in the Intraparietal Sulcus (IPS) during symbolic and mixed format (comparing symbolic with non-symbolic) tasks. In contrast, children with DD did not exhibit differences in the IPS during non-symbolic numerical magnitude processing. These neuroimaging findings complement the behavioral data in Chapter 3 and 4 by suggesting that children with DD have a deficit in semantic representation of symbolic numerical magnitudes rather than a core deficit in representing both symbolic and non-symbolic numerical magnitudes. The findings from these studies provide converging evidence to support a core deficit in processing the semantic meaning of symbolic numerals in children with persistent DD

    The role of the left intraparietal sulcus in the relationship between symbolic number processing and children\u27s arithmetic competence

    Get PDF
    The neural foundations of arithmetic learning are not well understood. While behavioral studies have revealed relationships between symbolic number processing and individual differences in children\u27s arithmetic performance, the neurocognitive mechanisms that bind symbolic number processing and arithmetic are unknown. The current fMRI study investigated the relationship between children\u27s brain activation during symbolic number comparison (Arabic digits) and individual differences in arithmetic fluency. A significant correlation was found between the numerical ratio effect on reaction times and accuracy and children\u27s arithmetic scores. Furthermore, children with a stronger neural ratio effect in the left intraparietal sulcus (IPS) during symbolic number processing exhibited higher arithmetic scores. Previous research has demonstrated that activation of the IPS during numerical magnitude processing increases over the course of development, and that the left IPS plays an important role in symbolic number processing. The present findings extend this knowledge to show that children with more mature response modulation of the IPS during symbolic number processing exhibit higher arithmetic competence. These results suggest that the left IPS is a key neural substrate for the relationship between the relative of precision of the representation of numerical magnitude and school-level arithmetic competence. © 2012 Elsevier Ltd

    The role of the left intraparietal sulcus in the relationship between symbolic number processing and children\u27s arithmetic competence

    Get PDF
    The neural foundations of arithmetic learning are not well understood. While behavioral studies have revealed relationships between symbolic number processing and individual differences in children\u27s arithmetic performance, the neurocognitive mechanisms that bind symbolic number processing and arithmetic are unknown. The current fMRI study investigated the relationship between children\u27s brain activation during symbolic number comparison (Arabic digits) and individual differences in arithmetic fluency. A significant correlation was found between the numerical ratio effect on reaction times and accuracy and children\u27s arithmetic scores. Furthermore, children with a stronger neural ratio effect in the left intraparietal sulcus (IPS) during symbolic number processing exhibited higher arithmetic scores. Previous research has demonstrated that activation of the IPS during numerical magnitude processing increases over the course of development, and that the left IPS plays an important role in symbolic number processing. The present findings extend this knowledge to show that children with more mature response modulation of the IPS during symbolic number processing exhibit higher arithmetic competence. These results suggest that the left IPS is a key neural substrate for the relationship between the relative of precision of the representation of numerical magnitude and school-level arithmetic competence. © 2012 Elsevier Ltd

    G-Algebroids: a unified framework for exceptional and generalised geometry, and poisson-lie duality

    Get PDF
    We introduce the notion of urn:x-wiley:00158208:media:prop202100028:prop202100028-math-0001-algebroid, generalising both Lie and Courant algebroids, as well as the algebroids used in urn:x-wiley:00158208:media:prop202100028:prop202100028-math-0002 exceptional generalised geometry for urn:x-wiley:00158208:media:prop202100028:prop202100028-math-0003. Focusing on the exceptional case, we prove a classification of “exact” algebroids and translate the related classification of Leibniz parallelisable spaces into a tractable algebraic problem. After discussing the general notion of Poisson–Lie duality, we show that the Poisson–Lie U-duality is compatible with the equations of motion of supergravity

    A predictive model of users’ behavior and values of smart energy meters using PLS-SEM

    Get PDF
    © Springer Nature Switzerland AG 2020. A smart energy metering system is an IoT device that connects several electrical household devices and record, monitor, estimate, control in-house energy consumption in a real-time basis. Although smart energy meters have great capabilities, this technology is still in infancy stages in many developing countries, and little is known about what perceived values are associated with smart meters from residents’ perspectives. Therefore, this research aimed to fill this gap by examining the impact of six different types of perceived values on residents’ intentions to use smart meters in UAE. The study followed a quantitative approach by gathering 266 survey responses which were tested by using Partial Least Squares-Structural Equation Modeling (PLS-SEM). The statistical results genuinely indicated that perceived epistemic values, environmental values, emotional values, and convenience values can significantly impact residents’ intention to use smart meter, whereas social values and monetary values found to have no significant impact on their intentions to use this technology. Theoretical and practical implications are indicated, and directions of future research are specified afterwards

    Youth representations of environmental protest

    Get PDF
    A necessary condition for a functioning democracy is the participation of its citizens, including its youth. This is particularly true for political participation in environmental decisions because these decisions can have intergenerational consequences. In this article we examine young people’s beliefs about one form of political participation - protest - in the context of communities affected by fracking and associated anti-fracking protest, and discuss the implications of these representations for education. Drawing on focus groups with 121 young people (age 15-19) in 5 schools and colleges near sites which have experienced anti-fracking protest in England and Northern Ireland, we find young people well-informed about avenues for formal and non-formal political participation against a background of disillusionment with formal political processes and varying levels of support for protest. We find representations of protest as disruptive, divisive, extreme, less desirable than other forms of participation, and ineffective in bringing about change but effective in awareness-raising. These representations are challenging, not least because the way protest is interpreted is critical to the way people think and act in the world. These representations of environmental protest must be challenged through formal education in order to safeguard the UN Convention on the Rights of the Child and ensure that the spirit of Article 11 of the UK Human Rights Act is protected

    Survey instrument for: Accessing the benefits of smart meters: barriers and opportunities for acceptance and engagement

    No full text
    Copy of survey instrument
    • 

    corecore