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G-Algebroids: A Unified Framework for Exceptional and
Generalised Geometry, and Poisson–Lie Duality

Mark Bugden, Ondřej Hulík, Fridrich Valach,* and Daniel Waldram

We introduce the notion of 𝖦-algebroid, generalising both Lie and Courant
algebroids, as well as the algebroids used in 𝖤n(n) ×ℝ+ exceptional
generalised geometry for n ∈ {3,… , 6}. Focusing on the exceptional case, we
prove a classification of “exact” algebroids and translate the related
classification of Leibniz parallelisable spaces into a tractable algebraic
problem. After discussing the general notion of Poisson–Lie duality, we show
that the Poisson–Lie U-duality is compatible with the equations of motion
of supergravity.

1. Introduction

1.1. String Theory and Courant Algebroids

When studying various aspects of string theory, Courant
algebroids[18] provide an invaluable tool. They can be seen as a
“many-points” generalisation of quadratic Lie algebras (Lie alge-
bras equipped with an inner product).1 More precisely, a Courant
algebroid is given by a vector bundle E → M together with some
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extra structure, most notably a bracket on
the space of sections. An important class
is given by the so-called exact Courant
algebroids. These have E ≅ TM⊕ T∗M
and are classified by H3(M), correspond-
ing to the class of the 3-form flux in string
theory.[25,26]

More generally, one can encode all
the bosonic NSNS field content of 10-
dimensional type II supergravities by
means of a generalised metric on an ex-
act Courant algebroid, and then describe

the corresponding dynamics in terms of a suitable Ricci tensor
and scalar curvature.[6,10,13,23]2 Extending to M-theory, the sym-
metries of eleven-dimensional supergravity on a n-dimensional
manifold M, define an exceptional generalised geometry[5,11,20] in
terms of a particular type of Leibniz algebroid.[2] Again the
bosonic fields define a generalised metric and the dynamics are
encoded by the vanishing of a suitable Ricci tensor.[5]

1.2. Poisson–Lie T-Duality

Furthermore, the phenomenon of Poisson–Lie T-duality[15] turns
out to be inherently linked with Courant algebroids.[25] This du-
ality, which can be seen as a non-abelian generalisation of the
usual stringy T-duality, relates two (ormore) different string back-
grounds, each described by an exact Courant algebroid with a
generalised metric. In order for these algebroids to be Poisson–
Lie dual to one another, they must be both pullbacks of the same
non-exact Courant algebroid.
Consequently, in order to fully understand the Poisson–Lie T-

duality and its relation to supergravity, it was necessary to extend
the relevant concepts (e.g. the curvature tensors) to the non-exact
Courant setup.[8,9,14,27] This result provided a simple proof[27,28] of
the compatibility of the duality with string background equations,
extending the result of [29]. In addition, a method for searching
for new solutions to these equations was developed.
Finally, let us emphasise that the Poisson–Lie T-duality and its

cousins studied in the present work are to be understood (inmost
Sections) in the most general sense of the word, i.e. including
the spectator coordinates. In the T-duality case this represents a
vast generalisation of the most studied class of examples given
by pairs of Poisson–Lie groups.

2 The RR fields can be seen as spinors w.r.t. the Courant description
and thus they also fit into this framework, or alternatively as part of
the generalised metric in exceptional generalised geometry. Their role
in Poisson–Lie T-duality was elucidated in [7].
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1.3. Poisson–Lie U-Duality

The n-torus compactifications of M-theory exhibit a U-duality
symmetry, which features the split real forms of exceptional Lie
groups of rank n (as opposed to the split real form of the orthog-
onal group in the T-duality case). A Poisson–Lie-type generalisa-
tion of U-duality was first proposed and investigated in the case
without spectators in [19, 22]. One of the goals of this paper is to
describe this phenomenon in the language of algebroids, allow-
ing the employment of techniques and strategies known from
Courant algebroids. In particular, this will involve defining a suit-
able non-exact generalisation of the algebroids that appear in ex-
ceptional generalised geometry.

1.4. Summary of Results

In the present work we introduce a general framework of 𝖦-
algebroids, tailored for the study of dualities and related topics,
such as Leibniz (or generalised) parallelisations. In addition to
recovering the algebroids (up to n = 6) used in exceptional gen-
eralised geometry, we recover Lie and Courant algebroids, and
the algebroids in [16]. In each case we formulate the appropriate
notion of Poisson–Lie duality.
Focusing then on the exceptional case, we prove a classifica-

tion result for exact algebroids (of “M-theoretic type”) and reduce
the classification of Leibniz parallelisable spaces to a quite simple
algebraic problem. It should be noted that the latter essentially
mirrors a result, derived using different methods, by Inverso[12]

(see also [4] for the n = 4 case). We then provide a simple proof
of the compatibility of the Poisson–Lie U-duality (in the general
case with spectators) with the bosonic part of the equations of
motion of the relevant supergravity (see Section 9).
It should also be emphasised that the presented framework is

entirely geometric and avoids the need of an explicit coordinate
description. Furthermore, it provides a natural language for the
study of dualities at the level of algebroids, without the need for
extending the spacetime.

1.5. Outline of the Paper

The paper is structured as follows. We start by discussing the
general types of “geometries” (e.g. exceptional, Courant, etc.),
encoded in an admissible group data set, introduce (generalised)
isotropic and coisotropic subspaces and provide several exam-
ples.We then define𝖦-algebroids and in particular exceptional al-
gebroids, and discuss examples thereof together with some clas-
sification results in the exact case. Proceeding to pullbacks, we
prove an important theorem concerning the construction of ex-
ceptional algebroids, and then turn to the related topic of Leibniz
parallelisations. After discussing the general concept of Poisson–
Lie duality, we again restrict our attention to the exceptional case,
show how several simple examples from the literature fit into the
present framework. We then prove the compatibility of the dual-
ity and supergravity equations of motion. Some technical details
and proofs concerning the exceptional case are moved to the Ap-
pendix.

1.6. Notation

We will denote Lie groups by 𝖦,𝖪,𝖦𝖫(n,ℝ),… , and their corre-
sponding Lie algebras by 𝔤, 𝔨, 𝔤𝔩(n,ℝ),… We will keep the same
symbols E,N,… for both group representation spaces and the
corresponding associated bundles. The annihilator of a subspace
V ⊂W will be denoted by V◦ ⊂W∗, the pairing of vectors with
covectors by ⟨⋅, ⋅⟩, and the transpose of a linear map by a su-
perscript t. We shall write S2V for the second symmetric tensor
power of a vector space V .
In the text, we will be often working with maps S2E → N,N →

S2E, and their duals. For the sake of clarity we will not give these
maps specific names, but will instead refer to them, and their
(partial) duals, by a subscript – for example, the image of a 𝜉 ⊗ n
under themap E∗ ⊗ N → E will be denoted by (𝜉 ⊗ n)E (this map
can be seen as the composition of E∗ ⊗ N → E∗ ⊗ S2E → E∗ ⊗

E ⊗ E with the contraction of the first two terms).

1.7. Outlook and Future Prospects

The present work opens the door for further investigations in the
area of Poisson–Lie dualities or exceptional generalised geometry
and its cousins. A natural question is the extension of the results
to the case n = 7 and beyond, as well as to geometries given by
other groups, such as the 𝖲𝗉𝗂𝗇(n, n) ×ℝ+ of [24]. One can also ex-
amine possible reformulations of the framework in terms of L∞-
algebroids or dgmanifolds,making a connection to theworks.[1,2]

Furthermore, using the results of Section 6 one can try to perform
a classification of Leibniz parallelisations (which in turn corre-
spond to maximal consistent truncations[16]), or search for new
Poisson–LieU-dual backgrounds. A detailed study of these issues
is left to later works.

2. Admissible Group Data Set

2.1. Admissible Group Data Set

There is a certain algebraic pattern underlying several types of
“geometries”, for example the geometry of Lie algebroids,[21]

Courant algebroids,[18] or the Leibniz algebroids appearing in the
description of exceptional generalised geometry.[2,5,20] Generalis-
ing this pattern, we introduce the concept of an admissible group
data set. For simplicity, we divide the definition in two parts.

Definition 2.1. A group data set is given by a reductive (real) Lie
group 𝖦, a faithful representation E of 𝖦, a decomposition S2E =
N ⊕ N̂ into subrepresentations, and a map N → S2E proportional
to the embedding.

Throughout the text we will use the following notation. By the
map N → S2E we will always mean the one from the definition,
while S2E → N will always be taken to be the projection w.r.t. N̂.
We also define a map 𝜋′ : End(E) → End(E) to be the partial dual
of the composition

E ⊗ E → S2E → N → S2E → E ⊗ E,

and we set 𝜋 := 1 − 𝜋′.
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Definition 2.2. A group data set is admissible if 𝜋(End(E)) ⊂ 𝔤.

Remark. This condition is based on a pattern common to var-
ious “types” of geometries (c.f. [5] and [3]). Note that the compo-
nents of the map 𝜋′ are usually denoted by Yij

kl in the exceptional
field theory literature.

Lemma 2.3. An admissible group data set is fully determined by spec-
ifying 𝖦 and the decomposition S2E = N ⊕ N̂ (i.e. the embedding
N → S2E is fixed), unless 𝔤 ≅ 𝔤𝔩(E) and N̂ = 0.

Proof. Given two different maps N → S2E which both lead to
𝜋(End(E)) ⊂ 𝔤, we can take a suitable linear combination of the
respective 𝜋’s to get that Im(id) = End(E) ⊂ 𝔤. Thus 𝔤 ≅ 𝔤𝔩(E),
implying we have N = 0 and N̂ = S2E (which makes N → S2E
trivial), or vice versa. □

2.2. Examples

We now provide a list of examples, given by reductive groups
with semisimple parts given by split real forms of simply-laced
semisimple Lie groups. We provide also the characterisation of
representations (of the semisimple part) in terms of Dynkin dia-
grams, with E corresponding to a black node andN to a blue one.
Notice that in these examples, the choices of 𝖦, E and N ⊂ S2E
determine N̂ as well. Consequently, we will often refer to an ad-
missible group data set simply as a triple (𝖦, E, N).

Example 2.4. The simplest example consists of 𝖦 = 𝖦𝖫(n,ℝ), N = 0
and E the vector representation. Later it will give rise to Lie algebroids.
The diagram is

Example 2.5. Take 𝖦 = 𝖮(n, n), with the vector representation E =
ℝ2n, and N ≅ ℝ. This gives

The induced map S2E → ℝ corresponds to an inner product on E of
signature (n, n). Clearly, the setup can be generalised to the 𝖮(p, q)-
case. This will correspond to Courant algebroids.

Example 2.6. Take n ∈ {3,… , 6} and let 𝖦 = 𝖤n(n) ×ℝ+, corre-
sponding to the split real form of the exceptional Lie algebra 𝔢n.3 The
details about the representations E, N as well as the structure of the al-
gebras can be found in the Appendix. Here it suffices to say that under
the subalgebra 𝔤𝔩(n,ℝ) ⊂ 𝔢n(n) ⊕ℝ, defining T := ℝn, we have

E ≅ T ⊕ ∧2 T∗ ⊕ ∧5 T∗, N ≅ T∗ ⊕ ∧4 T∗ ⊕ (T∗ ⊗ ∧6 T∗),

while ℝ+ acts on E and N with weights 1 and 2, respectively. Writing
u = X + 𝜎2 + 𝜎5 ∈ E, the map S2E → N is given by

u⊗ u → 2 iX𝜎2 + (2 iX𝜎5 − 𝜎2 ∧ 𝜎2) + 2 j𝜎2 ∧ 𝜎5,

3 Strictly speaking, we only get an exceptional Lie algebra for n = 6. The
remaining cases are defined by following the pattern of Dynkin dia-
grams.

where (j𝜎2 ∧ 𝜎5)(Y) := (iY𝜎2) ∧ 𝜎5 for Y ∈ T. The map S2E∗ → N∗,
which is dual to N → S2E, is given (up to amultiple) by an analogous
formula. We shall refer to this data as the exceptional (admissible)
group data set. In terms of the Dynkin diagrams, we get

Example 2.7 [16]. Let n ≥ 2. Consider 𝖦 = 𝖲𝖫(n + 1,ℝ) ×ℝ+, with
E = ∧2ℝn+1, N = ∧4 ℝn+1 and ℝ+ acting with weights 1 and 2. If
n = 2, n = 3, and n = 4, we recover special cases of the first, second,
and third examples, respectively. For n > 3 this corresponds to

The maps S2E → N and S2E∗ → N∗ are proportional to the
wedge product.

Remark. The𝖮(n, n) example above differs from the rest by not
having an extra central factor. Even though it is this semisimple
choice that gives rise to Courant algebroids, one can also consider
the analogous𝖮(n, n) ×ℝ+-geometry, as in [6]. Physically, this has
the advantage of treating the entire NSNS sector, including the
dilaton, in a uniform way.

2.3. Isotropy and Coisotropy

We now proceed to the introduction of isotropic and coisotropic
subspaces, which (especially the latter one) will be important in
the subsequent sections. This will generalise the usual notions
from Riemannian geometry.

Definition 2.8. We say that a subspace V ⊂ E is isotropic if (V ⊗

V)N = 0. Similarly, we say that a subspace V ⊂ E is coisotropic if
(V◦ ⊗ V◦)N∗ = 0. A subspace V ⊂ E is Lagrangian if it is maximally
isotropic (cannot be further enlarged). Similarly, a subspace V ⊂ E is
co-Lagrangian if it is minimally coisotropic (has no proper coisotropic
subalgebra).

Remark. In the language of double/exceptional field theory,
the coisotropic subspaces correspond to solutions of the section
constraint.[5,10,23] Note that not all (co-)Lagrangian subspaces of a
given E need to have the same dimension. For instance, as shown
in Proposition A.2, in the exceptional case there are 2 possible co-
Lagrangian subspaces (up to an isomorphism), corresponding to
the M-theory and type IIB solutions of the section constraint.4

Example 2.9. In the (𝖦𝖫(n,ℝ),ℝn, 0) case, any subspace is
coisotropic, while the only co-Lagrangian subspace is 0.

Example 2.10. In the (𝖮(n, n),ℝ2n,ℝ) case, the space E = ℝ2n is
equipped with an inner product of signature (n, n). The coisotropy
(and isotropy) coincide with the usual notions, w.r.t. this structure;
Lagrangian and co-Lagrangian subspaces are the same, and they are
both half-dimensional.

4 The type IIA solutions correspond instead to certain non-minimally
coisotropic subspaces.
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Example 2.11. In the (𝖲𝖫(n + 1,ℝ) ×ℝ+,∧2ℝn+1,∧4ℝn+1) case for
n > 3, there are precisely two types of co-Lagrangian subspaces:

1) V = ∧2U ⊂ E, with U ⊂ ℝn+1 a subspace of codimension 1 (V
has codimension n),

2) V = (∧2 Ξ)◦ ⊂ E, with Ξ ⊂ (ℝn+1)∗ of dimension 3 (V has codi-
mension 3).

Lemma 2.12. V is coisotropic iff (V◦ ⊗ N)E ⊂ V.

Proof. (V◦ ⊗ V◦)N∗ = 0 ⇐⇒ ⟨V◦ ⊗ V◦, N⟩ = 0 ⇐⇒ ⟨(V◦ ⊗

N)E, V
◦⟩ = 0. □

Lemma 2.13. For the exceptional group data set, (V◦ ⊗ N)E = V iff
V is co-Lagrangian.

Proof. Supposing (V◦ ⊗ N)E = V , V is clearly coisotropic. If
there is a proper coisotropic subspace V ′ ⊊ V , then (V◦ ⊗ N)E ⊂
(V ′◦ ⊗ N)E ⊂ V ′ ⊊ V . The other direction follows from an ex-
plicit check, using the classification of (co-)Langrangian sub-
spaces in Appendix A.3. □

3. 𝖦-Algebroids

Let us now define the algebroid structure that we will use to uni-
fies the study the exceptional and other geometries.5

Definition 3.1. Fix an admissible group data set. A 𝖦-algebroid con-
sists of a principal 𝖦-bundle over M together with the following struc-
ture on the associated vector bundles E → M and N → M:

• an ℝ-linear bracket [⋅, ⋅] : Γ(E) × Γ(E) → Γ(E)
• a vector bundle map 𝜌 : E → TM (the anchor)
• an ℝ-linear operator  : Γ(N) → Γ(E)

such that for any u, v, w ∈ Γ(E), n ∈ Γ(N), f ∈ C∞(M),

[u, [v, w]] = [[u, v], w] + [v, [u, w]] (1)

[u, fv] = f [u, v] + (𝜌(u)f )v (2)

[u, v] + [v, u] = (u⊗ v)N (3)

(fn) = fn + (d̂f ⊗ n)E, (4)

where d̂ := 𝜌t◦d : C∞(M) → Γ(E∗), and the action [u, ⋅] preserves the
𝖦-structure.
A 𝖦-algebroid with M = pt is called a 𝖦-algebra.

The last condition (the bracket preserving the 𝖦-structure), is
to be understood as follows. Condition (2) implies that any u gives
rise to a vector field on the total space E, which projects onto 𝜌(u).
Lifting this vector field to the frame bundle of E, the condition
asks that it preserves the given 𝖦-subbundle. In other words, for
any trivialisation by a 𝖦-frame we have that the vertical part of
[u, ⋅] acts as an element in the adjoint representation.

5 Strictly speaking, we shall also assume a choice of a 𝖦-structure (i.e. a
set of 𝖦-related frames) on the representation E. (Note that because
of the construction, all of the above examples have a natural such
structure.) This will induce a 𝖦-structure on the corresponding asso-
ciated bundle.

In particular this means that the action [u, ⋅] can be extended to
other bundles associated to representations of 𝖦, in particular to
tensor powers of E and their duals. For instance, for v, w ∈ Γ(E)
and 𝜉 ∈ Γ(E∗), we have

[u, v⊗ w] = [u, v]⊗ w + v⊗ [u, w],

𝜌(u)⟨𝜉, v⟩ = ⟨[u, 𝜉], v⟩ + ⟨𝜉, [u, v]⟩.

Notice also that since the map S2E → N is surjective, the oper-
ator  is uniquely determined by condition (3).

Lemma 3.2. For a𝖦-algebroid we have for all u, v ∈ Γ(E), n ∈ Γ(N),
f ∈ C∞(M)

𝜌([u, v]) = [𝜌(u), 𝜌(v)], (a)

[n, u] = 0, (b)

𝜌◦ = 0, Ker(𝜌) is coisotropic, (c)

[fu, v] = f [u, v] − 𝜋(d̂f ⊗ u)v, (d)

[u,n] = [u, n], (e)

[u, d̂f ] = d̂(𝜌(u)f ), (f )

Proof. First equation is obtained by setting w → fw in (1) and
repeatedly using (2). Setting u = v in (1), using (3) and the sur-
jectivity of S2E → N, we get (b). The third line is obtained by
acting with the anchor on (3) and (4) and using the fact that
(Ker 𝜌)◦ ≅ Im(𝜌t). The next claim follows by a straightforward ap-
plication of (2), (3), (4), and

−(𝜌(v)f )u + [d̂f ⊗ (u⊗ v)N ]E = −⟨d̂f, v⟩u + [d̂f ⊗ (u⊗ v)N ]E

= −𝜋(d̂f ⊗ u)v.

For (e) and (f) we calculate

[u,(v⊗ w)N ] = [u, [v, w] + [w, v]]

= [[u, v], w] + [v, [u, w]] + [[u, w], v] + [w, [u, v]]

= ([u, v]⊗ w)N +(v⊗ [u, w])N

= [u, (v⊗ w)N ],

⟨[u, d̂f ], v⟩ = 𝜌(u)⟨d̂f, v⟩ − ⟨d̂f, [u, v]⟩

= 𝜌(u)𝜌(v)f − 𝜌([u, v])f = 𝜌(v)𝜌(u)f = ⟨d̂(𝜌(u)f ), v⟩.

□

Since Ker(𝜌) is coisotropic, we have a chain complex

T∗M⊗ N → E
𝜌

←←←←←→ TM → 0. (5)

Definition 3.3. We say that a 𝖦-algebroid is exact if this is an exact
sequence (i.e. it is exact at E and TM). More generally, a 𝖦-algebroid
with 𝜌 surjective is called transitive.
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4. Examples of 𝖦-Algebroids

4.1. Lie Algebroids

Taking (𝖦, E, N) = (𝖦𝖫(n,ℝ),ℝn, 0) we get the definition of Lie
algebroids.[21] In this case a𝖦-algebra is the same as a Lie algebra.
One of the simplest examples is:

Example 4.1 (Tangent Lie algebroid). Take E = TM, with M an ar-
bitrary manifold, the bracket given by the commutator of vector fields,
and the anchor being the identity (we have  = 0).

The sequence (5) becomes simply 0 → E → TM → 0, imply-
ing:

Proposition 4.2. In the (𝖦𝖫(n,ℝ),ℝn, 0)-case, a𝖦-algebroid is exact
iff it is a tangent Lie algebroid.

4.2. Courant Algebroids

Courant algebroids[18] correspond to 𝖦-algebroids for
(𝖮(p, q),ℝp+q,ℝ) and with  = d̂. In the last equality, we use the
identification E ≅ E∗ provided by the 𝖮(p, q)-structure.

Example 4.3 (Twisted generalised tangent bundle). Let M be an
n-dimensional manifold and H ∈ Ω3(M) a closed form. Then

E = TM⊕ T∗M

has a natural 𝖮(n, n)-structure, given by the pairing of vectors and
1-forms. The bracket is given by

[X + 𝛼, X ′ + 𝛼′] = XX
′ + (X𝛼

′ − iX ′d𝛼 + iX iX ′H),

the anchor is the projection onto TM, and  = d.

The classification result[25] for exact Courant algebroids can be
stated in the present language as follows.

Theorem 4.4. In the (𝖮(p, q),ℝp+q,ℝ)-case, a 𝖦-algebroid is exact
iff it has the form of a twisted generalised tangent bundle. Exact 𝖦-
algebroids only exist for p = q and they are classified by H3(M). Lo-
cally, every exact 𝖦-algebroid has the form from Example 4.3 with
H = 0.

4.3. Elgebroids

Definition 4.5. An exceptional algebroid, or simply elgebroid, is a 𝖦-
algebroid given by the exceptional group data set (see Example 2.6),
for some n ∈ {3,… , 6}. An elgebroid over a point is called an elgebra.

Definition 4.6. An elgebroid is M-exact if it is exact and dimM = n.
It is IIB-exact if it is exact and dimM = n − 1.

Remark. As the name suggests, these are related to M-theory
and type IIB solutions of the section constraint. Proposition A.2
shows that these are the only 2 possibilities of exact elgebroids.

Example 4.7 (Exceptional tangent bundle[5,11,20]). Let M be a man-
ifold of dimension n ∈ {3,… , 6}. We can then consider

E := TM⊕ ∧2 T∗M⊕ ∧5 T∗M, (6)

with 𝜌 given by the projection onto the first factor and

[X + 𝜎2 + 𝜎5, X ′ + 𝜎′
2 + 𝜎

′
5] = XX

′ + (X𝜎
′
2 − iX ′d𝜎2)

+ (X𝜎
′
5 − iX ′d𝜎5 − 𝜎′

2 ∧ d𝜎2). (7)

The map , acting on the sections of N = T∗M⊕ ∧4 T∗M⊕

(T∗M⊗ ∧6 T∗M), coincides with d on the first two summands, and
vanishes on the third.6 This is an M-exact elgebroid.

Conversely, we have:

Theorem 4.8. Any M-exact elgebroid is locally isomorphic to the ex-
ceptional tangent bundle.

The proof of the Theorem is in Appendix A.6.

Remark. It is clear from the proof that the bracket can be
twisted, in analogy to Example 4.3, using a pair F1 ∈ Ω1(M),
F4 ∈ Ω4(M) satisfying dF1 = 0 and dF4 + F1 ∧ F4 = 0. However,
a global classification of exact elgebroids is more subtle than in
the Courant case. Note that in the physics literature, F1 is taken
to be exact, since otherwise, given a choice of generalised metric,
the warp factor of the (11 − n)-dimensional part of the M-theory
metric will not be globally defined.

5. Pullbacks

We now proceed to define pullbacks, which play an important
role in the construction of 𝖦-algebroids and in the description of
dualities. This can be seen as an extension of the results obtained
for the Courant case in [17].

Definition 5.1. Fix an admissible group data set. Let 𝜑 : M′ → M
be a surjective submersion and E → M a 𝖦-algebroid. A 𝖦-algebroid
structure on E′ := 𝜑∗E → M′, with the induced 𝖦-structure, is called
a pullback of E if for all sections u, v ∈ Γ(E) and n ∈ Γ(N) we have

[𝜑∗u,𝜑∗v]′ = 𝜑∗[u, v], 𝜑∗𝜌
′(𝜑∗u) = 𝜌(u), ′𝜑∗n = 𝜑∗n.

Note that the𝖦-algebroid structure on E′ is fully determined by
its anchor, the map 𝜑, and the structures on E. Thus, specifying
the anchor, there is at most one pullback (for a given E and 𝜑).

Definition 5.2. A 𝖦-algebroid is Leibniz parallelisable if it can be
written as a pullback of a 𝖦-algebra (along the unique map 𝜑 to the
point).

This coincides with the notion of Leibniz (or general)
parallelisability[16] in the physics literature – being a pullback of a
𝖦-algebra means that there is a global 𝖦-frame e𝛼 of E for which
the structure coefficients c𝛾

𝛼𝛽
, defined by [e𝛼 , e𝛽 ] = c𝛾

𝛼𝛽
e𝛾 , are con-

stant.

Definition 5.3. An action of a 𝖦-algebra E on a manifold M′ is a
map 𝜒 : E → Γ(TM′) which preserves the brackets. The stabiliser of
the action at a point p ∈ M′ is the kernel of 𝜒p : E → TpM

′.

In the particular case M = pt, the anchor of E′ can be seen as
an action of E onM′. A natural question then is: Given an action

6 The 𝖤n(n) ×ℝ+-structure is induced from the𝖦𝖫(n,ℝ)-structure of the
bundle E, given by the decomposition (6) (c.f. Example 2.6).
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of a𝖦-algebra on amanifold, when does this define a𝖦-algebroid
via the pullback construction? Let us now answer the question for
the case of M-exact elgebroids.

Theorem 5.4. A transitive action of an elgebra E on an n-
dimensional manifold M′ defines an M-exact pullback elgebroid on
E′ = M′ × E iff at every point the stabilisers are co-Lagrangian of codi-
mension n.

The proof can be found in Appendix A.7. Note that an analo-
gous result was obtained (using different methods) in [12].
More generally, a necessary condition for an action of a

𝖦-algebra to define a 𝖦-algebroid is that the stabilisers are
coisotropic. Setups where the coisotropy condition is also suffi-
cient include Lie and Courant algebroids.[17]

6. Classification of Exact Leibniz Parallelisable
Elgebroids

Let E be an elgebra. Since

[Im(), E] = 0, [E, Im()] ⊂ Im(),

we have that Im() ⊂ E is a two-sided ideal, and so we can con-
struct a Lie algebra

𝔤E := p(E),

where p is the projection E → E∕ Im(). More generally, ifV ⊂ E
is a subalgebra then 𝔤V := p(V) ⊂ 𝔤E is a Lie subalgebra. Con-
versely, if 𝔥 ⊂ 𝔤E is a Lie subalgebra, then p−1(𝔥) ⊂ E is a sub-
algebra.
We shall denote the 1-connected Lie group corresponding to 𝔤E

by 𝖦E , and we will denote by 𝖦V ⊂ 𝖦E a subgroup corresponding
to 𝔤V for the subalgebra V ⊂ E. Note that both E and N are 𝖦E-
modules and the action of 𝖦E preserves the bracket, the map ,
as well as the maps between S2E and N.

Theorem 6.1. Let E be an elgebra and V ⊂ E a co-Lagrangian sub-
algebra of codimension n, satisfying Im ⊂ V. Suppose 𝖦V ⊂ 𝖦E is
closed. The natural action of E on M′ := 𝖦E∕𝖦V then gives rise to
an M-exact Leibniz parallelisable elgebroid over M′. Every M-exact
Leibniz parallelisable elgebroid over a connected compact base arises
in this way, for some pair (E, V).7

Proof. The Lie algebra 𝔤E acts on 𝖦E∕𝖦V , with the stabiliser at
point [g−1] given by Adg 𝔤V . This lifts to an action 𝜒 of E on M′,
with the stabiliser g ⋅ V , where g⋅ denotes the action of g ∈ 𝖦E .
We see that g ⋅ V is co-Lagrangian iff V is.
Conversely, if E′ → M′ is M-exact and Leibniz parallelisable,

coming from some elgebra E, then the anchor gives a transitive
action of 𝔤E onM′ (because Im acts trivially). SinceM′ is com-
pact,M′ = 𝖦E∕𝖧 for some 𝔥 ⊂ 𝔤E , yielding V = p−1(𝔥). □

Using this result, a classification of Leibniz parallelisable M-
exact elgebroids translates into a tractable algebraic problem and

7 Strictly speaking, we also need to make a choice of the subgroup𝖦V ⊂

𝖦E , corresponding to a fixed Lie algebra 𝔤V (this is a discrete choice).
For example, when 𝔤V = 0, we can take 𝖦V to be a discrete subgroup
of 𝖦E .

thus becomes an achievable goal. (It might still require some
case-to-case analysis.) We leave this problem to a later work.
More generally, one easily sees that any transitive/exact Leib-

niz parallelisable 𝖦-algebroid over a connected compact base
arises from some pair of a 𝖦-algebra and a coisotropic/co-
Lagrangian subalgebra thereof. (However, in general not every
such pair gives rise to a 𝖦-algebroid.)

7. Poisson–Lie Duality

We now use pullbacks to define a general notion of Poisson–Lie
duality, extending the definition from [27].

Definition 7.1. A pair of exact𝖦-algebroids, which are both pullbacks
of a given 𝖦-algebroid E → M, are said to be (mutually) Poisson–
Lie dual. If M ≠ pt and M = pt, this is a Poisson–Lie duality with
and without spectators, respectively. (The manifold M is called the
manifold of spectators.)

Example 7.2. In the Courant algebroid case we recover the Poisson–
Lie T-duality of [15], while the exceptional case gives the Poisson–Lie
U-duality, introduced in the case without spectators in [19,22].

Let us now discuss some examples of Poisson–Lie duality with-
out spectators. This corresponds to pairs of Leibniz parallelisable
exact 𝖦-algebroids arising from the same 𝖦-algebra E, but differ-
ent co-Lagrangian subalgebras V .

Example 7.3. In the Lie algebroid case, the Poisson–Lie duality with-
out spectators is trivial in the sense that any given 𝖦-algebra admits a
unique (trivial) co-Lagrangian V.

Example 7.4. In the Courant algebroid case, the Poisson–Lie dual-
ity without spectators corresponds to different choices of Lagrangian
subalgebras 𝔥, 𝔥′ ⊂ 𝔤. In the special case when 𝔥 ∩ 𝔥′ = 0, the cor-
responding groups 𝖧 and 𝖧′ carry compatible Poisson structures, i.e.
they are Poisson–Lie groups. This is the origin of the term “Poisson–Lie
(T-)duality”.

8. Examples of Leibniz Parallelisable M-Exact
Elgebroids

We now provide a short list of examples of Leibniz parallelisable
M-exact elgebroids (resp. exceptional tangent bundles), arising
from a pair of an elgebra E and its co-Lagrangian subalgebra V
of codimension n, satisfying Im ⊂ V .

8.1. U-Duality

The simplest case is the one with E an abelian Lie algebra, with
 = 0. Taking 𝖦E to be the (dimE)-dimensional torus and V to
be a co-Lagrangian subspace of codimension n corresponding
to a closed sub-torus 𝖦V ⊂ 𝖦E , gives rise to a Leibniz parallelis-
able exceptional tangent bundle on the n-dimensional torus Tn ≅
𝖦E∕𝖦V . Different V ’s are related by an 𝖤n(n) ×ℝ+-transformation
and give rise to Poisson–Lie dual setups. This is the standard U-
duality from string theory. Note that although the dual spaces will
be isomorphic as manifolds, equipping E with a generalisedmet-
ric (see the next Section) will result in different sets of geomet-
ric data.
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8.2. Group Manifolds

More generally, a class of examples of Leibniz parallelisable ex-
ceptional tangent bundles (known as “Scherk–Schwarz” reduc-
tions in the physics literature) arises from group manifolds, us-
ing the trivialisation of the tangent bundle by left-invariant vector
fields.[5] The corresponding pair (E, V) is given as follows.
Consider a Lie algebra 𝔨, corresponding to a Lie group K, with

dim 𝔨 ∈ {3,… , 6}, and take

E := 𝔨⊕ ∧2 𝔨∗ ⊕ ∧5 𝔨∗, V := ∧2 𝔨∗ ⊕ ∧5 𝔨∗,

[X + 𝜎2 + 𝜎5, X ′ + 𝜎′
2 + 𝜎

′
5] = adX X

′ + (adX 𝜎
′
2 − iX ′𝛿𝜎2)

+ (adX 𝜎
′
5 − iX ′𝛿𝜎5 − 𝜎′

2 ∧ 𝛿𝜎2),

where 𝛿 is the Chevalley-Eilenberg differential and ad denotes the
action of 𝔨 (on 𝔨 and on ∧∙ 𝔨∗).
This can be modified by taking an arbitrary pair of elements

F1 ∈ 𝔨∗, F4 ∈ ∧4 𝔨∗, satisfying 𝛿F1 = 0 and 𝛿F4 + F1 ∧ F4 = 0, and
using the analogue of formula (3). As a result we again obtain an
M-exact elgebroid on K.
More generally, a rich class of Leibniz parallelisations on

groups equipped with non-invariant structures has been con-
structed and studied in [19,22]. This provided one of the motiva-
tions for the present work.

8.3. 4-Sphere

Let us now describe how the example of S4 from [16] fits in the
present framework.
First, recall that in the n = 4 case we have E ≅ ∧2 V5, N ≅

∧4 V5, for V5 := ℝ5, with the maps S2E → N and S2E∗ → N∗

given by wedging. Every co-Lagrangian of codimension 4 is of
the form ∧2 V4 for some 4-dimensional subspace V4 ⊂ V5.
A natural example is thus given by the Lie algebra case

E := 𝔰𝔬(5), V := 𝔰𝔬(4),

which produces a Leibniz parallelisable M-exact elgebroid over
S4 ≅ 𝖲𝖮(5)∕𝖲𝖮(4).

9. Elgebroids and Supergravity

We now turn to applying the elgebroid framework to the study of
supergravities given by a restriction of the 11-dimensional super-
gravity to lower dimensions, following.[5]

9.1. Connections and Torsion

Definition 9.1. Let E → M be a 𝖦-algebroid. A generalised connec-
tion on E is a map

∇ : Γ(E) × Γ(E) → Γ(E), (u, v) → ∇uv,

satisfying

∇fuv = f ∇uv, ∇ufv = f ∇uv + (𝜌(u)f )v,

and such that ∇u preserves the 𝖦-structure for every u ∈ Γ(E).

Definition 9.2. The torsion of a generalised connection on E is the
map

T∇ : Γ(E) × Γ(E) → Γ(E),

T∇(u, v) = ∇uv − ∇vu − [u, v] + ((∇u⊗ v)N)E,

where we understand ∇u as a section of E∗ ⊗ E.

Proposition 9.3. Torsion is C∞(M)-bilinear, i.e. T∇ ∈ Γ(E∗ ⊗ E∗ ⊗

E).

Proof. Follows immediately from (2) and Part (d) of
Lemma 3.2. □

9.2. Generalised Metric and Torsion-Free Compatible
Connections

Let us now specialise to the exceptional case. We start by recalling
the construction from [5]. First, let 𝖪 be the double cover of the
maximal compact subgroup of 𝖦, see Appendix A.1.

Definition 9.4. A generalised metric is a reduction of the 𝖦-structure
on E to a 𝖪-structure.

Physically, a generalised metric on an M-exact elgebroid en-
codes the bosonic field content of the lower-dimensional super-
gravity.8

Definition 9.5. A compatible connection is a generalised connection
preserving the generalised metric.

Definition 9.6. A generalised metric is called torsion-free if it admits
a torsion-free compatible connection, i.e. if there is a compatible con-
nection ∇ with T∇ = 0.

The space of compatible connections is affine, over Γ(E∗ ⊗

ad(𝖪)), where ad(𝖪) is the adjoint bundle corresponding to 𝖪.
Consider the vector bundle map

𝜆 : E∗ ⊗ ad(𝖪) → E∗ ⊗ E∗ ⊗ E, a → T∇+a − T∇,

where ∇ is a compatible connection (𝜆(a) is independent of the
choice of ∇). If a generalised metric is torsion-free, torsion-free
compatible connections form an affine space over Γ(Ker 𝜆). Fi-
nally note that if ∇ is a compatible connection then ∇u acts also
on any vector bundle associated to the generalised metric.
Suppose now that we have a torsion-free generalisedmetric on

an elgebroid E and let X be a bundle associated to some represen-
tation of 𝖪. The action of ad(𝖪) on X induces the map

𝜆X : Ker 𝜆 ⊗ X → E∗ ⊗ ad(𝖪)⊗ X → E∗ ⊗ X,

8 A generalised metric strictly only defines a 𝖪∕ℤ2-structure. How-
ever, since in what follows we will want to consider the exceptional
group analogues of spinor representations we here use the stronger
𝖪-structure definition.
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which in turn gives us the projection X : E
∗ ⊗ X → (E∗ ⊗

X )∕ Im 𝜆X . By construction we then have that

X◦∇ : Γ(X) → Γ((E∗ ⊗ X)∕ Im 𝜆X )

is independent of the choice of the torsion-free connection ∇.

9.3. Curvature

For every n ∈ {4,… , 6} there are two important representations,
labelled S and J in Appendix A.1, known as the spinor and grav-
itino representations, respectively.9 Notably, we have that the
codomain of bothS andJ can be identified with S⊕ J. We thus
have a map

 := S + J : E
∗ ⊗ (S⊕ J) → S⊕ J.

Definition 9.7. Let E be an elgebroid, with a torsion-free generalised
metric and a compatible torsion-free connection ∇. The generalised
Ricci curvature is the map

 : Γ(S) → Γ(S⊕ J), 𝜖 → ◦∇◦◦∇𝜖.

It is immediately apparent, from the discussion above, that
is independent of the choice of ∇.
The following is proven in [5]. (We are here also using Theo-

rem 4.8.)

Proposition 9.8. Suppose E is an M-exact elgebroid with a gener-
alised metric. Then the torsion of any compatible connection is in
Im 𝜆. Thus all generalised metrics on M-exact elgebroids are torsion-
free.

Proposition 9.9. For any generalised metric on anM-exact elgebroid,
the Ricci curvature is a tensor, i.e. ∈ Γ(S∗ ⊗ (S⊕ J)).

On an M-exact elgebroid the vanishing of this tensor corre-
sponds to the equations of motion of the corresponding super-
gravity on M. A solution to these equations gives rise, after tak-
ing a product of M with a Minkowski space, to a solution to the
equations of 11-dimensional supergravity.

9.4. Compatibility of Poisson–Lie U-Duality and Supergravity

Note that generalised metrics can be always pulled back, via pull-
backs of elgebroids.

Theorem 9.10. Suppose E′ → M′ is an M-exact pullback elgebroid
of some E → M along a surjective submersion. Suppose that there is a
generalised metric on E, inducing a generalised metric on E′. Then the
generalised Ricci tensor on E′ vanishes iff the generalised Ricci tensor
on E vanishes.

9 For simplicity we are here excluding the n = 3 case, which is some-
what simpler but does not respect the following pattern, on account
of X being the identity for all X .

Proof. Let 𝜑 be the map M′ → M. First, let us show that the
generalised metric on E is torsion-free. Picking any compati-
ble connection ∇ on E, we have an induced compatible connec-
tion 𝜑∗∇ on E′, defined by (𝜑∗∇)𝜑∗u𝜑

∗v = 𝜑∗(∇uv). We then have
𝜑∗T∇ = T𝜑∗∇ ∈ Γ(Im 𝜆′), implying T∇ ∈ Γ(Im 𝜆). We can thus
find another compatible connection on E, which is torsion-free.
In particular,  on E is well defined. The theorem then follows
from the fact that on E′ vanishes iff it vanishes on 𝜑∗u, for all
u ∈ Γ(E). But(𝜑∗u) = 𝜑∗(u), which concludes the proof. □

This leads to the following consequences. First, having two dif-
ferent M-exact pullbacks (of the same E) on E′ and E′′, with the
generalised metrics induced by the one on E, the Ricci tensor
vanishes on E′ iff it vanishes on E′′. In other words, Poisson–Lie
U-duality (in the M-theory case) is compatible with the equations
of supergravity.
Furthermore, let E′ be an M-exact pullback of an elgebra E.

Solving  = 0 on E is “easy”, since the equation is purely alge-
braic. However, finding a solution and pulling it back to E′ pro-
duces an honest solution to the supergravity equations ofmotion.

Appendix A: Exceptional Groups and Elgebroids

A.1. List of Exceptional Groups and Related Data

We here provide a list of groups and representations relevant
for the exceptional geometry, namely the split real forms of the
“exceptional” groups and the double-cover 𝖪 of their maximal
compact subgroups, representations E and N of the exceptional
group, and finally the representations S and J of 𝖪 (the spinor
and gravitino representations).

n 3 4 5 6

𝖤n(n) 𝖲𝖫(3,ℝ) × 𝖲𝖫(2,ℝ) 𝖲𝖫(5,ℝ) 𝖲𝗉𝗂𝗇(5, 5) 𝖤6(6)

𝖪 (𝖲𝗉𝗂𝗇(3) × 𝖲𝗉𝗂𝗇(2))∕ℤ2 𝖲𝗉𝗂𝗇(5) 𝖲𝗉𝗂𝗇(5) × 𝖲𝗉𝗂𝗇(5) 𝖴𝖲𝗉(8)

E (3, 2) 10 16 27

N (3′, 1) 5′ 10 27′

S 21 ⊕ 2−1 4 (4, 1)⊕ (1, 4) 8

J 41 ⊕ 4−1 ⊕ 23 ⊕ 2−3 16 (4, 5)⊕ (5, 4) 48

A.2. Algebra

Let us be more explicit about the Lie algebra 𝔢n(n) ⊕ℝ. In terms
of its 𝔤𝔩(T)-subalgebra, for T := ℝn, it decomposes as

𝔢n(n) ⊕ℝ = ℝ⊕ 𝔤𝔩(T)⊕ ∧3 T∗ ⊕ ∧6 T∗ ⊕ ∧3 T ⊕ ∧6 T .

First, the ℝ factor is central. Writing

a3 + a6 + w3 + w6 ∈ ∧3 T∗ ⊕ ∧6 T∗ ⊕ ∧3 T ⊕ ∧6 T,

the remaining nontrivial brackets are

[a3, a
′
3] = −a3 ∧ a′3, [w3, w

′
3] = −w3 ∧ w′

3, [a6, w3] = 𝜄w3a6,

[a3, w6] = 𝜄w6a3,
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[w3, a3] = (a3 ⋆ w3 −
1
3
⟨a3, w3⟩𝟙) +

1
3
⟨a3, w3⟩ ∈ 𝔤𝔩(T)⊕ℝ

[w6, a6] = −(a6 ⋆ w6 −
2
3
⟨a6, w6⟩𝟙) −

2
3
⟨a6, w6⟩ ∈ 𝔤𝔩(T)⊕ℝ,

with

⋆ : ∧k T∗ ⊗ ∧k T → 𝔤𝔩(T) ≅ Hom(T ⊗ T∗,ℝ),

𝛼 ⋆ w = ⟨𝜄∙𝛼, 𝜄∙w⟩,

The algebra 𝔢n(n) is embedded by setting the ℝ-component equal
to the trace of the 𝔤𝔩(T) component divided by 9 − n.
The representation E is given as follows. First, the action of

𝔤𝔩(T) is given by the decomposition

E = T ⊕ ∧2 T∗ ⊕ ∧5 T∗, (A.1)

while ℝ acts with weight 1. Writing u = X + 𝜎2 + 𝜎5 ∈ E, the re-
maining part is given by

w3 ⋅ u = 𝜄w3 (𝜎2 + 𝜎5), w6 ⋅ u = −𝜄w6𝜎5,

a3 ⋅ u = 𝜄Xa3 + a3 ∧ 𝜎2, a6 ⋅ u = 𝜄Xa6.

A.3. Classification of Lagrangian and Co-Lagrangian Subspaces

Recall that the formula for S2E → N was given in Example 2.6.

Lemma A.1. Let n ∈ {3,… , 6}. Consider u ∈ E = T ⊕ ∧2 T∗ ⊕

∧5 T∗. If (u⊗ u)N = 0 then there exists g ∈ 𝖤n(n) ×ℝ+ s.t. g ⋅ u ∈ T.
If furthermore u has a non-vanishing T-part, this can be achieved via
an element of the nilpotent subgroup ∧3 T∗ ⊕ ∧6 T∗ ⊂ 𝖤n(n) ×ℝ+.

Proof. Suppose first that u = X + 𝜎2 + 𝜎5, with X ≠ 0. Let 𝜉 be
an element ofT∗ satisfying ⟨𝜉, X⟩ = 1. Since (u⊗ u)N = 0 implies
iX𝜎2 = 0, taking a3 = −𝜎2 ∧ 𝜉 we have that ea3 ⋅ u = X + 𝜎′

5, with
𝜎′
5 ∈ ∧5 T∗. Continuing, taking a6 = 𝜎′

5 ∧ 𝜉, we get e
a6 ⋅ (X + 𝜎′

5) =
X .
We are left to show that if u = 𝜎2 + 𝜎5, then there exists g

s.t. g ⋅ u will have a nonzero T-part. Suppose 𝜎2 ≠ 0. Note that
(u⊗ u)N = 0 implies 𝜎2 ∧ 𝜎2 = 0, i.e. 𝜎2 is decomposable10. Let
o ∈ ∧2 T be a decomposable element s.t. ⟨𝜎2, o⟩ = 1 and let Y ∈
T ≠ 0 be such that iY𝜎2 = 0. Setting w3 := o ∧ Y , we have ew3 ⋅
(𝜎2 + 𝜎5) = Y + (𝜎2 + iw3𝜎5) + 𝜎5, since w3 ⋅ iw3𝜎5 = 0.
Finally, if u = 𝜎5 ≠ 0, taking any w3 s.t. iw3𝜎5 ≠ 0 will produce

a 2-form part in ew3 ⋅ 𝜎5, yielding the previous case. □

Proposition A.2. The space of Lagrangian subspaces of E consists of
2 orbits of the action of 𝖤n(n) ×ℝ+, given by n and n − 1-dimensional
subspaces, respectively.

Proof. We shall show that, up to an 𝖤n(n) ×ℝ+-transformation
we obtain but two possibilities. We proceed inductively.
Suppose that such a Lagrangian subspace W is spanned by

vectors 𝜔i, i ∈ {1,… }. Since (𝜔1 ⊗𝜔1)N = 0, we can find g such
that g ⋅ 𝜔1 ∈ T – we now replaceW by g ⋅W, i.e. all 𝜔i by g ⋅ 𝜔i.

10 By definition, a 2-form 𝜎2 is decomposable if it can be written as a
wedge product of two 1-forms, or equivalently if 𝜎2 ∧ 𝜎2 = 0.

Let now U ⊂ T be an n − 1-dimensional subspace of T which
is complementary to ⟨𝜔1⟩ ∈ T , where ⟨⋅⟩ denotes the linear span.
The remaining 𝜔i’s satisfy (𝜔1 ⊗𝜔i)N = 0, implying they be-
long to the subspace U ⊕ ∧2U∗ ⊕ ∧5U∗ ⊕ ⟨𝜔1⟩. Replacing 𝜔i,
i ∈ {2,… } by 𝜔i + 𝜆i𝜔1, for some suitable 𝜆i, we get that

𝜔i ∈ U ⊕ ∧2U∗ ⊕ ∧5U∗, i ∈ {2,… }.

Similarly, the Lie subalgebra of 𝔢n(n) ⊕ℝ preserving the subspace
spanned by 𝜔1 contains the algebra 𝔢n−1(n−1) ⊕ℝ ≅ ℝ⊕ 𝔤𝔩(U)⊕
∧3U∗ ⊕ ∧6U∗ ⊕ ∧3U ⊕ ∧6U. Thus the problem for a given n
reduces to the same problem for n − 1.
To finish, we only need to look at the case n = 2,11 where we

have E ≅ T ⊕ ∧2 T∗, with dimT = 2, N ≅ T∗, and ((X + 𝜎2)⊗
(X + 𝜎2))N = 2iX𝜎2. If 𝜔1 has a non-zero 2-form part, the condi-
tion (𝜔1 ⊗𝜔1)N = 0 requires it to have a vanishing vector part.
This gives the 1-dimensional Lagrangian subspace ∧2 T∗. The
other possibility is to have 𝜔1 ∈ T , which can be further enlarged
by adding a second generator of T , yielding the 2-dimensional
Lagrangian subspace T . □

Proposition A.3. All pairs (V,W), given by a co-Lagrangian subspace
V ⊂ E of codimension n and a complementary Lagrangian subspace
W, are related by the action of the group 𝖤n(n) ×ℝ+.

Proof. Since the formulas for S2E∗ → N∗, in terms of the 𝔤𝔩(T)-
decomposition, have (up to an overall constant) the same form
as the ones for S2E → N, we get that up to the 𝖤n(n) ×ℝ+-action
there is just one codimension n co-Lagrangian subspace V ⊂ E.
Let us therefore identify V with ∧2 T∗ ⊕ ∧5 T∗ ⊂ E. Note that this
is preserved by the subgroup of 𝖤n(n) ×ℝ+ corresponding to ℝ⊕

𝔤𝔩(T)⊕ ∧3 T∗ ⊕ ∧6 T∗ ⊂ 𝔢n(n) ⊕ℝ.
Suppose again that W is spanned by 𝜔i. Since 𝜔i ∉ V , the

Lemma implies that we can use a ∧3 T∗ ⊕ ∧6 T∗-transformation
tomap𝜔1 into an element ofT . Redefining the basis ofW, we can
assume that the remaining 𝜔i’s lie inU ⊕ ∧2U∗ ⊕ ∧5U∗, where
U is a complement to ⟨𝜔1⟩ ⊂ T , and the situation reduces to
the same situation in a smaller dimension. Ultimately, we reach
n = 2, in which the only possible 2-dimensional Lagrangian com-
plementary to ∧2 T∗ isW = T . □

A.4. Rewriting the Bracket

For the purpose of the proof, it will be useful to recast the bracket
on the exceptional tangent bundle in a more convenient lan-
guage. Following,[5] this is given as follows.
First, pick local coordinates onM. This (locally) induces a triv-

ialisation E ≅ M × (T ⊕ ∧2 T∗ ⊕ ∧5 T∗), with T := ℝn, and thus
Γ(E) ≅ C∞(M)⊗ (T ⊕ ∧2 T∗ ⊕ ∧5 T∗) and similarly for N. We
then have

[u, v] = 𝜌(u)v − 𝜋(d̂u)v. (A.2)

One can check that this is independent of the choice of coordi-
nates.

11 Although above we only considered the case of n ≥ 3, both the 𝔤𝔩(n,ℝ)
decompositions of E, N, as well as the form of the map E ⊗ E → N,
extend naturally to the n = 2 case.
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A.5. Pre-Elgebroids

Definition A.4. A pre-elgebroid is a structure obtained by replacing,
in the definition of an elgebroid, the condition (1) by a weaker condi-
tion (a) from Lemma 3.2. A pre-elgebroid is M-exact if the sequence
T∗M⊗ N → E → TM → 0 is exact and dimM = n.

Note that in particular the properties (c) and (d) from
Lemma 3.2 still hold for a pre-elgebroid.

Lemma A.5. An M-exact pre-elgebroid is locally of the form from
Example 4.7, but with the bracket

[X + 𝜎2 + 𝜎5, X ′ + 𝜎′
2 + 𝜎

′
5] = XX

′

+(X𝜎
′
2 − iX ′d𝜎2 + iX ′ iXF4 + (iXF1)𝜎

′
2 − iX ′ (F1 ∧ 𝜎2))

+(X𝜎
′
5 − iX ′d𝜎5 − 𝜎′

2 ∧ d𝜎2 + (iXF4) ∧ 𝜎′
2 − iX ′ (F4 ∧ 𝜎2)

+2(iXF1)𝜎′
5 − F1 ∧ 𝜎2 ∧ 𝜎′

2 − 2iX ′ (F1 ∧ 𝜎5)), (A.3)

for some F1 ∈ Ω1(M), F4 ∈ Ω4(M).

Proof. By Lemma 2.13, M-exactness implies that 𝜌 is surjec-
tive and Ker 𝜌 is co-Lagrangian of codimension n. Choose a lo-
cal isotropic splitting 𝜄 : TM → E of the exact sequence. Since the
baseM is n-dimensional, 𝜄(TM) is automatically Lagrangian, and
we have a decomposition E = Ker 𝜌 ⊕ 𝜄(TM) into a codimension
n co-Lagrangian subbundle and a Lagrangian one. Using Propo-
sition A.3, we can then make an identification

E = 𝜄(TM)⊕ Ker 𝜌 ≅ TM⊕ (∧2 T∗M⊕ ∧5 T∗M), (A.4)

and similarly N ≅ T∗M⊕ ∧4 T∗M, with the maps between S2E
andN (and the action of 𝖤n(n) ×ℝ+) given as in the case of the ex-
ceptional tangent bundle. This identification is not unique, due to
the presence of theℝ+-factor in the groupℝ+ × 𝖦𝖫(T) preserving
the decomposition (1). We can however always make the choice
locally, with two such choices differing by a positive function e𝜓

for 𝜓 ∈ C∞(M).
It remains to check that the bracket has the desired form. Pick-

ing local coordinates on M, we get a trivialisation of E just as in
the previous Subsection. From (2), part (d) of Lemma 3.2, and the
fact that [u, ⋅] preserves the 𝖤n(n) ×ℝ+-structure, we get

[u, v] = 𝜌(u)v − 𝜋(d̂u)v + A(u) ⋅ v,

where A is (at every point ofM) a map

T ⊕ ∧2 T∗ ⊕ ∧5 T∗ →ℝ⊕ ∧6 T ⊕ ∧3 T ⊕ 𝔤𝔩(T)⊕ ∧3 T∗ ⊕ ∧6 T∗.

Similarly, we have n = (d̂n)E + B(n), with

B : T∗ ⊕ ∧4 T∗ ⊕ (T∗ ⊗ ∧6 T∗) → T ⊕ ∧2 T∗ ⊕ ∧5 T∗.

Taking two constant sections u, v, we have [u, v] = A(u) ⋅ v and
also 𝜌([u, v]) = 0, implying

A(u)(T ⊕ ∧2 T∗ ⊕ ∧5 T∗) ⊂ ∧2 T∗ ⊕ ∧5 T∗.

Thus A is actually targeted only in ℝ′ ⊕ ∧3 T∗ ⊕ ∧6 T∗, where

ℝ′ ⊂ 𝔢n(n) ⊕ℝ, ℝ′ = {( c
3
,− c

3
𝟙) ∈ ℝ⊕ 𝔤𝔩(T) ∣ c ∈ ℝ}.

In particular,ℝ′ acts on T , ∧2 T∗, and ∧5 T∗ with weights 0, 1, and
2, respectively. Let us use the notation A0, A3, A6 for the parts of
A valued in ℝ′, ∧3 T∗, ∧6 T∗.
Since (T ⊗ T)N = 0, using (3) we have that for X, Y ∈ T

0=A(X ) ⋅ Y +A(Y) ⋅ X = iY (A3(X )+A6(X ))+ iX (A3(Y)+A6(Y)).

This implies that A|T , seen as an element of (T∗ ⊗ ∧0 T∗)⊕
(T∗ ⊗ ∧3 T∗)⊕ (T∗ ⊗ ∧6 T∗) is skew-symmetric in each of its
terms, implying there exist F1 ∈ T∗ and F4 ∈ ∧4 T∗ s.t. A(X) =
iX (F1 + F4). Similarly, denoting 2- and 5-forms by the correspond-
ing subscript, we have

B(iX𝜎2) = A(X ) ⋅ 𝜎2 + A(𝜎2) ⋅ X = (iX (F1 + F4)) ∧ 𝜎2

+ iXA3(𝜎2) + iXA6(𝜎2).

Thus iX𝜎2 = 0 implies iX [(F1 + F4) ∧ 𝜎2 + A3(𝜎2) + A6(𝜎2)] = 0.
Taking 𝜎2 decomposable, there are n − 2 independent vectors
in T which give zero upon contraction with F1 ∧ 𝜎2 + A3(𝜎2) ∈
∧3 T∗ and F4 ∧ 𝜎2 + A6(𝜎2) ∈ ∧6 T∗. This implies

A3(𝜎2) = −F1 ∧ 𝜎2, A6(𝜎2) = −F4 ∧ 𝜎2.

Furthermore, for 𝜎2 decomposable, 0 = −B(𝜎2 ∧ 𝜎2) = 2A(𝜎2) ⋅
𝜎2 = 2A0(𝜎2)𝜎2, implying A0(𝜎2) = 0. Since decomposable 2-
forms span ∧2 T∗, we get

A(𝜎2) = −F1 ∧ 𝜎2 − F4 ∧ 𝜎2 ∀𝜎2 ∈ ∧2 T∗.

Next, from−B(𝜎2 ∧ 𝜎′
2) = A(𝜎2) ⋅ 𝜎

′
2 + A(𝜎′

2) ⋅ 𝜎2 = −2F1 ∧ 𝜎2 ∧
𝜎′
2 we deduce B(𝜎4) = 2F1 ∧ 𝜎4. This in turn gives

2F1 ∧ iX𝜎5 = B(iX𝜎5) = A(X ) ⋅ 𝜎5 + A(𝜎5) ⋅ X

= 2(iXF1)𝜎5 + A(𝜎5) ⋅ X,

implying A3(𝜎5) = 0 and A6(𝜎5) = −2F1 ∧ 𝜎5. For any 𝜎5 there ex-
ists 𝜎2 ≠ 0 such that j𝜎2 ∧ 𝜎5 = 0, implying

0 = B(j𝜎2 ∧ 𝜎5) = A(𝜎2) ⋅ 𝜎5 + A(𝜎5) ⋅ 𝜎2 = A0(𝜎5)𝜎2,

and thus A0(𝜎5) = 0. Putting things together and using (7), we
obtain bracket of the desired form. □

Lemma A.6. For any M-exact pre-elgebroid, the Jacobiator

J(u, v, w) := [u, [v, w]] − [[u, v], w] − [v, [u, w]]

is C∞(M)-linear in all the slots.

Proof. The claim follows from a straightforward calculation
using formula (3). □
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This immediately implies:

Corollary A.7. If an M-exact pre-elgebroid locally admits a triviali-
sation such that the Jacobiator of constant sections vanishes, then it is
an exact elgebroid.

A.6. Proof of Theorem 4.8

Proof. Applying Lemma A.5, we locally get a bracket of the form
(3). A quick calculation then reveals

[X, [Y, 𝜎2]] − [[X, Y ], 𝜎2] − [Y, [X, 𝜎2]]

= 𝜎2 ∧ iY iX (dF4 + F1 ∧ F4 + dF1).

Thus axiom (1) from the definition of an elgebroid requires dF1 =
dF4 + F1 ∧ F4 = 0. Conversely, it is straightforward to check that
for any F1 and F4 satisfying these conditions, the axiom is satis-
fied for all u, v, w ∈ Γ(E).
Taking a different choice of the identification (4), we have

F1 → F1 + d𝜓 , F4 → e−𝜓F4.

We can therefore locally always achieve F1 = 0 and dF4 = 0. Fi-
nally, note that at a point p ∈ M any other Lagrangian splitting
TM → E is related to our chosen one via the action of an element
from the nilpotent subgroup ∧3 T∗

pM⊕ ∧6 T∗
pM of 𝖤n(n) ×ℝ+. As-

suming F1 = 0, changing the splitting by an element A3 + A6 ∈
Ω3(M)⊕Ω6(M) modifies the bracket by F4 → F4 + dA3, which
means that we can always locally find a splitting such that the
bracket has the form (7) with F1 = F4 = 0. □

A.7. Proof of Theorem 5.4

Proof. In general, an elgebroid is M-exact iff it is transitive and
Ker 𝜌 is at every point (onM′) co-Lagrangian and of codimension
n. Therefore, if the pullback is to be M-exact, the stabilisers of the
actionmust be co-Lagrangian and of codimension n. We will now
show that this is the only requirement.
Let us make the identification Γ(E′) ≅ C∞(M′)⊗ E and simi-

larly for E′∗ andN′. Equations (2), (4), and part (d) of Lemma 3.2,
imply that [⋅, ⋅]′ and ′ necessarily take the form

[u, v]′ = [u, v] + 𝜒(u)v − 𝜋(d̂u)v, ′n = n + (d̂n)E,

where d̂f = 𝜒 t(df ) ∈ C∞(M′)⊗ E∗ for any f ∈ C∞(M′). One eas-
ily verifies that this satisfies (2), (3) and (4), and the bracket [u, ⋅]
preserves the 𝖤d(d) ×ℝ+-structure (in the last condition we use
Definition 2.2). Finally, for any (i.e. not necessarily constant) sec-
tions u, v ∈ Γ(E′) we have

[𝜌′(u), 𝜌′(v)]′ − 𝜌′([u, v]′) = −𝜒(((d̂u⊗ v)N)E) = 0,

due to the coisotropy. Thus E′ is a pre-elgebroid. Since the Jacobi-
ator of constant sections coincides with the vanishing Jacobiator
on E, we can use Corollary A.7 to conclude the proof. □
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