1,263 research outputs found
Ferromagnetic behavior in magnetized plasmas
We consider a low-temperature plasma within a newly developed MHD Fluid
model. In addition to the standard terms, the electron spin, quantum particle
dispersion and degeneracy effects are included. It turns out that the electron
spin properties can give rise to Ferromagnetic behavior in certain regimes. If
additional conditions are fulfilled, a homogenous magnetized plasma can even be
unstable. This happen in the low-temperature high-density regime, when the
magnetic properties associated with the spin can overcome the stabilizing
effects of the thermal and Fermi pressure, to cause a Jeans like instability.Comment: 4 pages, 1 figur
A linearized kinetic theory of spin-1/2 particles in magnetized plasmas
We have considered linear kinetic theory including the electron spin
properties in a magnetized plasma. The starting point is a mean field
Vlasov-like equation, derived from a fully quantum mechanical treatment, where
effects from the electron spin precession and the magnetic dipole force is
taken into account. The general conductivity tensor is derived, including both
the free current contribution, as well as the magnetization current associated
with the spin contribution. We conclude the paper with an extensive discussion
of the quantum-mechanical boundary where we list parameter conditions that must
be satisfied for various quantum effects to be influential.Comment: 11 page
Nonlinear Interactions Between Gravitational Radiation and Modified Alfven Modes in Astrophysical Dusty Plasmas
We present an investigation of nonlinear interactions between Gravitational
Radiation and modified Alfv\'{e}n modes in astrophysical dusty plasmas.
Assuming that stationary charged dust grains form neutralizing background in an
electron-ion-dust plasma, we obtain the three wave coupling coefficients, and
calculate the growth rates for parametrically coupled gravitational radiation
and modified Alfv\'{e}n-Rao modes. The threshold value of the gravitational
wave amplitude associated with convective stabilization is particularly small
if the gravitational frequency is close to twice the modified Alfv\'en
wave-frequency. The implication of our results to astrophysical dusty plasmas
is discussed.Comment: A few typos corrected. Published in Phys. Rev. 
Nonlinear coupled Alfv\'{e}n and gravitational waves
In this paper we consider nonlinear interaction between gravitational and
electromagnetic waves in a strongly magnetized plasma. More specifically, we
investigate the propagation of gravitational waves with the direction of
propagation perpendicular to a background magnetic field, and the coupling to
compressional Alfv\'{e}n waves. The gravitational waves are considered in the
high frequency limit and the plasma is modelled by a multifluid description. We
make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell
system and derive a wave equation for the coupled gravitational and
electromagnetic wave modes. A WKB-approximation is then applied and as a result
we obtain the nonlinear Schr\"{o}dinger equation for the slowly varying wave
amplitudes. The analysis is extended to 3D wave pulses, and we discuss the
applications to radiation generated from pulsar binary mergers. It turns out
that the electromagnetic radiation from a binary merger should experience a
focusing effect, that in principle could be detected.Comment: 20 pages, revtex4, accepted in PR
New Quantum Limits in Plasmonic Devices
Surface plasmon polaritons (SPPs) have recently been recognized as an
important future technique for microelectronics. Such SPPs have been studied
using classical theory. However, current state-of-the-art experiments are
rapidly approaching nanoscales, and quantum effects can then become important.
Here we study the properties of quantum SPPs at the interface between an
electron quantum plasma and a dielectric material. It is shown that the effect
of quantum broadening of the transition layer is most important. In particular,
the damping of SPPs does not vanish even in the absence of collisional
dissipation, thus posing a fundamental size limit for plasmonic devices.
Consequences and applications of our results are pointed out.Comment: 5 pages, 2 figures, to appear in Europhysics Letter
Resonant interaction between gravitational waves, electromagnetic waves and plasma flows
In magnetized plasmas gravitational and electromagnetic waves may interact
coherently and exchange energy between themselves and with plasma flows. We
derive the wave interaction equations for these processes in the case of waves
propagating perpendicular or parallel to the plasma background magnetic field.
In the latter case, the electromagnetic waves are taken to be circularly
polarized waves of arbitrary amplitude. We allow for a background drift flow of
the plasma components which increases the number of possible evolution
scenarios. The interaction equations are solved analytically and the
characteristic time scales for conversion between gravitational and
electromagnetic waves are found. In particular, it is shown that in the
presence of a drift flow there are explosive instabilities resulting in the
generation of gravitational and electromagnetic waves. Conversely, we show that
energetic waves can interact to accelerate particles and thereby \emph{produce}
a drift flow. The relevance of these results for astrophysical and cosmological
plasmas is discussed.Comment: 12 pages, 1 figure, typos corrected and numerical example adde
Dynamics of spin 1/2 quantum plasmas
The fully nonlinear governing equations for spin 1/2 quantum plasmas are
presented. Starting from the Pauli equation, the relevant plasma equations are
derived, and it is shown that nontrivial quantum spin couplings arise, enabling
studies of the combined collective and spin dynamics. The linear response of
the quantum plasma in an electron--ion system is obtained and analyzed.
Applications of the theory to solid state and astrophysical systems as well as
dusty plasmas are pointed out.Comment: 4 pages, 2 figures, to appear in Physical Review Letter
Interaction between gravitational waves and plasma waves in the Vlasov description
The nonlinear interaction between electromagnetic, electrostatic and
gravitational waves in a Vlasov plasma is reconsidered. By using a orthonormal
tetrad description the three-wave coupling coefficients are computed. Comparing
with previous results, it is found that the present theory leads to algebraic
expression that are much reduced, as compared to those computed using a
coordinate frame formalism. Furthermore, here we calculate the back-reaction on
the gravitational waves, and a simple energy conservation law is deduced in the
limit of a cold plasma.Comment: 9 pages, uses jpp.cl
Spin contribution to the ponderomotive force in a plasma
The concept of a ponderomotive force due to the intrinsic spin of electrons
is developed. An expression containing both the classical as well as the
spin-induced ponderomotive force is derived. The results are used to
demonstrate that an electromagnetic pulse can induce a spin-polarized plasma.
Furthermore, it is shown that for certain parameters, the nonlinear
back-reaction on the electromagnetic pulse from the spin magnetization current
can be larger than that from the classical free current. Suitable parameter
values for a direct test of this effect are presented.Comment: 4 pages, 2 figures, version accepted for publication in Physical
  Review Letter
Fast electrochemical doping due to front instability in organic semiconductors
The electrochemical doping transformation in organic semiconductor devices is
studied in application to light-emitting cells. It is shown that the device
performance can be significantly improved by utilizing new fundamental
properties of the doping process. We obtain an instability, which distorts the
doping fronts and increases the doping rate considerably. We explain the
physical mechanism of the instability, develop theory, provide experimental
evidence, and perform numerical simulations. We further show how improved
device design can amplify the instability thus leading to a much faster doping
process and device kinetics.Comment: 4 pages, 4 figure
- …
