1,158 research outputs found
Identification of phenological stages and vegetative types for land use classification
There are no author-identified significant results in this report
Focused Ion Beam Induced Deflections of Freestanding Thin Films
Prominent deflections are shown to occur in freestanding silicon nitride thin membranes when exposed to a 50 keV gallium focused ion beam for ion doses between 1014 and 1017 ions/cm2. Atomic force microscope topographs were used to quantify elevations on the irradiated side and corresponding depressions of comparable magnitude on the back side, thus indicating that what at first appeared to be protrusions are actually the result of membrane deflections. The shape in high-stress silicon nitride is remarkably flat-topped and differs from that in low-stress silicon nitride. Ion beam induced biaxial compressive stress generation, which is a known deformation mechanism for other amorphous materials at higher ion energies, is hypothesized to be the origin of the deflection. A continuum mechanical model based on this assumption convincingly reproduces the profiles for both low-stress and high-stress membranes and provides a family of unusual shapes that can be created by deflection of freestanding thin films under beam irradiation.Engineering and Applied SciencesMolecular and Cellular Biolog
Unzipping Kinetics of Double-Stranded DNA in a Nanopore
We studied the unzipping kinetics of single molecules of double-stranded DNA
by pulling one of their two strands through a narrow protein pore. PCR analysis
yielded the first direct proof of DNA unzipping in such a system. The time to
unzip each molecule was inferred from the ionic current signature of DNA
traversal. The distribution of times to unzip under various experimental
conditions fit a simple kinetic model. Using this model, we estimated the
enthalpy barriers to unzipping and the effective charge of a nucleotide in the
pore, which was considerably smaller than previously assumed.Comment: 10 pages, 5 figures, Accepted: Physics Review Letter
Fusion of secretory vesicles isolated from rat liver
Secretory vesicles isolated from rat liver were found to fuse after exposure to Ca2+. Vescle fusion is characterized by the occurrence of twinned vesicles with a continuous cleavage plane between two vesicles in freeze-fracture electron microscopy. The number of fused vesicles increases with increasing Ca2+-concentrations and is half maximal around 10–6 m. Other divalent cations (Ba2+, Sr2+, and Mg2+) were ineffective. Mg2+ inhibits Ca2+-induced fusion. Therefore, the fusion of secretory vesiclesin vitro is Ca2+ specific and exhibits properties similar to the exocytotic process of various secretory cells.
Various substances affecting secretionin vivo (microtubular inhibitors, local anethetics, ionophores) were tested for their effect on membrane fusion in our system.
The fusion of isolated secretory vesicles from liver was found to differ from that of pure phospholipid membranes in its temperature dependence, in its much lower requirement for Ca2+, and in its Ca2+-specificity. Chemical and enzymatic modifications of the vesicle membrane indicate that glycoproteins may account for these differences
Streaming fragment assignment for real-time analysis of sequencing experiments
We present eXpress, a software package for efficient probabilistic assignment of ambiguously mapping sequenced fragments. eXpress uses a streaming algorithm with linear run time and constant memory use. It can determine abundances of sequenced molecules in real time and can be applied to ChIP-seq, metagenomics and other large-scale sequencing data. We demonstrate its use on RNA-seq data and show that eXpress achieves greater efficiency than other quantification methods
Chaperone-assisted translocation of a polymer through a nanopore
Using Langevin dynamics simulations, we investigate the dynamics of
chaperone-assisted translocation of a flexible polymer through a nanopore. We
find that increasing the binding energy between the chaperone and
the chain and the chaperone concentration can greatly improve the
translocation probability. Particularly, with increasing the chaperone
concentration a maximum translocation probability is observed for weak binding.
For a fixed chaperone concentration, the histogram of translocation time
has a transition from long-tailed distribution to Gaussian distribution with
increasing . rapidly decreases and then almost saturates with
increasing binding energy for short chain, however, it has a minimum for longer
chains at lower chaperone concentration. We also show that has a minimum
as a function of the chaperone concentration. For different , a
nonuniversal dependence of on the chain length is also observed.
These results can be interpreted by characteristic entropic effects for
flexible polymers induced by either crowding effect from high chaperone
concentration or the intersegmental binding for the high binding energy.Comment: 10 pages, to appear in J. Am. Chem. So
Transverse Electronic Transport through DNA Nucleotides with Functionalized Graphene Electrodes
Graphene nanogaps and nanopores show potential for the purpose of electrical
DNA sequencing, in particular because single-base resolution appears to be
readily achievable. Here, we evaluated from first principles the advantages of
a nanogap setup with functionalized graphene edges. To this end, we employed
density functional theory and the non-equilibrium Green's function method to
investigate the transverse conductance properties of the four nucleotides
occurring in DNA when located between the opposing functionalized graphene
electrodes. In particular, we determined the electrical tunneling current
variation as a function of the applied bias and the associated differential
conductance at a voltage which appears suitable to distinguish between the four
nucleotides. Intriguingly, we observe for one of the nucleotides a negative
differential resistance effect.Comment: 19 pages, 7 figure
- …
