12,204 research outputs found
Energy migration in molecular assemblies:The characterisation and differentiation of two-photon mechanisms
Energy migration between chromophores plays a prominent role in a range of energy harvesting assemblies. Recent advances in the design and production of light-harvesting polymers have led to the synthesis of novel two-photon absorbing dendrimers. To construct increasingly efficient multifunctional macromolecules of this type, understanding the inherent optical processes and disentangling them has become imperative. This paper explores the fundamental processes by means of which energy transfers from a donor chromophore to an acceptor through two-photon absorption from an input laser beam. It is determined that three distinct classes of mechanism can operate: (i) two-photon absorption by individual chromophores is followed by transfer of the energy to an acceptor group; (ii) a singly excited chromophore is excited to a virtual state by the additional absorption of a photon from the pump radiation field, coupled with resonance energy transfer to the acceptor, or; (iii) two-photon excitation of the acceptor results from acquisition of one quantum of energy from a singly excited neighbour group and another from the throughput radiation. These mechanisms may compete and, in certain cases, lead to manifestations of quantum interference. Generally, the most favoured mechanism is determined by a balance of factors and constraints. Principal amongst the latter are the choice of wavelength (connected with the possibility of exploiting certain electronic resonances, whilst judiciously avoiding others) and the precise chromophore architecture (taking account of geometric factors concerned with the relative orientation of transition moments). As the relative importance of each mechanism determines the key nanophotonic characteristics of the assembly, the principles and results reported here afford the means for expediting highly efficient two-photon energy migration
All-optical control of molecular fluorescence
We present a quantum electrodynamical procedure to demonstrate the all-optical control of molecular fluorescence. The effect is achieved on passage of an off-resonant laser beam through an optically activated system; the presence of a surface is not required. Following the derivation and analysis of the all-optical control mechanism, calculations are given to quantify the significant modification of spontaneous fluorescent emission with input laser irradiance. Specific results are given for molecules whose electronic spectra are dominated by transitions between three electronic levels, and suitable laser experimental methods are proposed. It is also shown that the phenomenon is sensitive to the handedness of circularly polarized throughput, producing a conferred form of optical activity
Optical ordering of nanoparticles trapped by Laguerre-Gaussian laser modes
In earlier work, it has been established that laser-induced coupling between a pair of nanoparticles can enable the generation of novel patterns, entirely determined and controlled by the frequency, intensity, and polarization of the optical input. Jn this paper, the detailed spatial disposition about the beam axis is determined for two-, three- and four-nanoparticle systems irradiated by a Laguerre-Gaussian (LG) laser mode. The range-dependent laser-induced energy shift is identified by the employment of a quantum electrodynamical description, calculations are performed to determine the distribution of absolute minima as a function of the topological charge, and the results are graphically displayed. This analysis illustrates a number of interesting features, including the fact that on increasing the LG beam's topological charge the particles increasingly cluster, i.e. the order of the structure is significantly raised - also the number of minima for which the particles can be trapped is enhanced. Finally, it is shown that similar principles apply to other kinds of radially structured optical modes
Vortex/boundary-layer interactions: Data report, volume 1
This report summarizes the work done under NASA Grant NAGw-581, Vortex/Boundary Layer Interactions. The experimental methods are discussed in detail and numerical results are presented, but are not fully interpreted. This report should be useful to anyone who wishes to make further use of the data (available on floppy disc or magnetic tape) for the development of turbulence models or the validation of predictive methods. Journal papers are in course of preparation
Two-photon laser-induced fluorescence detection of OH
The TP-LIF OH sensor is based on the principle that a molecule having multiple energy states, all of which are bonding, can be pumped into the highest state with the resulting fluorescence being blue-shifted relative to all pumping wavelengths. In this way, one can successfully discriminate against virtually all noise sources in the system using long wavelength blocking filters in conjunction with solar-blind photomultiplier tubes. Thus, these systems tend to be signal limited rather than signal-to-noise limited as is true of the SP-LIF technique as well as other conventional analytical methods. The trick to achieving the above sampling scheme, with high efficiency, is in the use of high photon fluxes of short time duration. Obviously, the latter type of light source is fulfilled nicely by available pulsed lasers. From an operational point of view, however, this laser source needs to be tunable. The latter characteristic permits extremely high selectivity for the detection of a diatomic or simple polyatomic molecule by taking advantage of the high-resolution spectroscopic features of these type species
Optical control and switching of excitation transfer in nano-arrays
The possibility of influencing resonance energy transfer through the input of off-resonant pulses of laser radiation is the subject of recent research. Attention is now focused on systems in which resonance energy transfer is designedly precluded by geometric configuration. Here, through an optically nonlinear mechanism - optically controlled resonance energy transfer - the throughput of non-resonant pulses can facilitate energy transfer that is, in their absence, completely forbidden. The system thus functions as an optical buffer, with excitation throughput switched on by the secondary beam. For applications, a system based on two parallel nano-arrays is envisaged. This paper will establish and discuss the principles - those that can be exploited to enhance switching characteristics and efficiency, and others (such as off-axis excitation transfer) that may represent cross-talk limitations. Principles to be explored in detail are the interplay between geometric features, including the array architecture and repeat distance (lattice constant), the array spacing and translational symmetry, the orientations of the transition dipoles, and the magnitude of the relevant components of the nonlinear response tensors. The aim is, through a determination of key parameters, to inform a program of optimization that can deliver specific criteria for realizing the most efficient systems for implementation
Multiple light scattering and optomechanical forces
When off-resonant light travels through a transparent medium, light scattering is the primary optical process to occur. Multiple-particle events are relatively rare in optically dilute systems: scattering generally takes place at individual atomic or molecular centers. Several well-known phenomena result from such single-center interactions, including Rayleigh and Raman scattering, and the optomechanical forces responsible for optical tweezers. Other, less familiar effects may arise in circumstances where throughput radiation is able to simultaneously engage with two or more scattering sites in close, nanoscale, proximity. Exhibiting the distinctive near-field electromagnetic character, inter-particle interactions such as optical binding and a variety of inelastic bimolecular processes can then occur. Although the theory for each two-center process is well established, the connectivity of their mechanisms has not received sufficient attention. To address this deficiency, and to consider the issues that ensue, it is expedient to represent the various forms of multi-particle light scattering in terms of transitions between different radiation states. The corresponding quantum amplitudes, registering the evolution of photon trajectories through the material system, can be calculated using the tools of quantum electrodynamics. Each of the potential outcomes for multi-particle scattering generates a set of amplitudes corresponding to different orderings of the constituent photon-matter interactions. Performing the necessary sums over quantum pathways between radiation states is expedited by a state-sequence development, this formalism also enabling the identification of intermediate states held in common by different paths. The results reveal the origin and consequences of linear momentum conservation, and they also offer new insights into the behavior of light between closely neighboring scattering events. © 2010 Society of Photo-Optical Instrumentation Engineers
Exact nonclassical symmetry solutions of Arrhenius reaction-diffusion
Exact solutions for nonlinear Arrhenius reaction-diffusion are constructed in
dimensions. A single relationship between nonlinear diffusivity and the
nonlinear reaction term leads to a nonclassical Lie symmetry whose invariant
solutions have a heat flux that is exponential in time (either growth or
decay), and satisfying a linear Helmholtz equation in space. This construction
extends also to heterogeneous diffusion wherein the nonlinear diffusivity
factorises to the product of a function of temperature and a function of
position. Example solutions are given with applications to heat conduction in
conjunction with either exothermic or endothermic reactions, and to soil-water
flow in conjunction with water extraction by a web of plant roots.Comment: 19 pages, 4 figure
Optically controlled energy transfer in stacked and coplanar polycyclic chromophores
In the search for enhanced control over the process of resonance energy transfer in multichromophore molecular systems, all-optical mechanisms offer many significant advantages over other systems. One recently conceived scheme, based on the optical switching of energy transfer, is achieved by coupling a normally forbidden decay transition with pulses of off-resonant laser light. Earlier work has suggested that such systems could offer levels of efficiency that might approach those associated with the usual Forster mechanism. In this Letter, the ab initio results of specific calculations on stacked and coplanar polycyclic chromophores are reported. The results show that by judicious choice of electronic state and laser wavelength, much higher levels of efficiency are achievable. A possible scheme for the implementation of such a system is discussed with regard to its potential use in energy harvesting and optical switching applications. © 2010 American Chemical Society
- …
