268 research outputs found

    Early Investigations and Recent Advances in Intraperitoneal Immunotherapy for Peritoneal Metastasis.

    Get PDF
    Peritoneal metastasis (PM) is an advanced stage malignancy largely refractory to modern therapy. Intraperitoneal (IP) immunotherapy offers a novel approach for the control of regional disease of the peritoneal cavity by breaking immune tolerance. These strategies include heightening T-cell response and vaccine induction of anti-cancer memory against tumor-associated antigens. Early investigations with chimeric antigen receptor T cells (CAR-T cells), vaccine-based therapies, dendritic cells (DCs) in combination with pro-inflammatory cytokines and natural killer cells (NKs), adoptive cell transfer, and immune checkpoint inhibitors represent significant advances in the treatment of PM. IP delivery of CAR-T cells has shown demonstrable suppression of tumors expressing carcinoembryonic antigen. This response was enhanced when IP injected CAR-T cells were combined with anti-PD-L1 or anti-Gr1. Similarly, CAR-T cells against folate receptor Ī± expressing tumors improved T-cell tumor localization and survival when combined with CD137 co-stimulatory signaling. Moreover, IP immunotherapy with catumaxomab, a trifunctional antibody approved in Europe, targets epithelial cell adhesion molecule (EpCAM) and has shown considerable promise with control of malignant ascites. Herein, we discuss immunologic approaches under investigation for treatment of PM

    Retroperitoneal Castlemanā€™s disease: advocating a multidisciplinary approach for a rare clinical entity

    Get PDF
    BACKGROUND: Castlemanā€™s disease is a rare and poorly understood disease entity that may resemble more common conditions and represents a clinical challenge to the treating surgeon. CASE PRESENTATION: In this report, we describe a case of a 61-year-old Caucasian woman with a symptomatic retroperitoneal mass. The specimen obtained from her resection contained a protuberant encapsulated mass, exhibiting microscopic features consistent with localized, unicentric Castlemanā€™s disease. These characteristics included architectural features and immunohistochemical findings consistent with the hyaline vascular variant of Castlemanā€™s disease. CONCLUSION: We report a very rare case of a retroperitoneal hyaline vascular type of Castlemanā€™s disease. We discuss the diagnostic dilemma Castlemanā€™s disease may present to the surgeon, with an emphasis on multidisciplinary management of these patients. We also review current data on pathogenesis, treatment and outcomes

    Dairy Farm Business Summary: Central Valleys Region 1997

    Full text link
    E.B. 98-12Dairy farm managers throughout New York State have been participating in Cornell Cooperative Extension's farm business summary and analysis program since the early 1950's. Managers of each participating farm business receive a comprehensive summary and analysis of their farm business. The information in this report represents averages of the data submitted from dairy farms in the Central Valleys Region for 1997

    Surgical Resection of a Rare Primary Retroperitoneal Mucinous Borderline Tumor of MĆ¼llerian Origin: A Case Report

    Get PDF
    ā€¢Primary retroperitoneal mucinous tumors (PRMTs) are a rare group of cystic neoplasms consisting of three subtypes.ā€¢PRMTs are histologically similar to ovarian mucinous tumors but lack true ovarian tissue.ā€¢PRMTs should be considered in the differential diagnosis when encountering retroperitoneal cystic lesions.ā€¢During surgical resection tumor disruption should be avoided.ā€¢Surgical resection alone provides durable disease control for mucinous borderline tumors of low malignant potential

    Ectopic A-lattice seams destabilize microtubules

    Get PDF
    Natural microtubules typically include one A-lattice seam within an otherwise helically symmetric B-lattice tube. It is currently unclear how A-lattice seams influence microtubule dynamic instability. Here we find that including extra A-lattice seams in GMPCPP microtubules, structural analogues of the GTP caps of dynamic microtubules, destabilizes them, enhancing their median shrinkage rate by >20-fold. Dynamic microtubules nucleated by seeds containing extra A-lattice seams have growth rates similar to microtubules nucleated by B-lattice seeds, yet have increased catastrophe frequencies at both ends. Furthermore, binding B-lattice GDP microtubules to a rigor kinesin surface stabilizes them against shrinkage, whereas microtubules with extra A-lattice seams are stabilized only slightly. Our data suggest that introducing extra A-lattice seams into dynamic microtubules destabilizes them by destabilizing their GTP caps. On this basis, we propose that the single A-lattice seam of natural B-lattice MTs may act as a trigger point, and potentially a regulation point, for catastrophe

    North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene

    Get PDF
    PURPOSE: To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). METHODS: A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. RESULTS: Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13. The duplication creates a partial copy of CCNC and a complete copy of PRDM13. The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. CONCLUSIONS: The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1 hypersensitive site upstream of the CCNC and PRDM13 genes or a tandem duplication of the PRDM13 gene. The duplication found in the RFS355 family is distinct from the previously reported duplication and provides additional support that dysregulation of PRDM13, not CCNC, is the cause of NCMD mapped to the MCDR1 locus

    Rare occurrence of pseudomyxoma peritonei (PMP) syndrome arising from a malignant transformed ovarian primary mature cystic teratoma treated by cytoreductive surgery and HIPEC: a case report

    Get PDF
    Background: Pseudomyxoma peritonei (PMP) syndrome is a disease process that typically occurs from ruptured appendiceal mucocele neoplasms. PMP syndrome arising from malignant transformation of an ovarian primary mature cystic teratoma (MCT) is a pathogenesis rarely encountered. Case presentation: Herein, we report a 28-year-old patient evaluated and treated for a right ovarian mass and large volume symptomatic abdominopelvic mucinous ascites. Molecular profiling and genetic analysis revealed mutations in ATM, GNAS, and KRAS proteins while IHC demonstrated gastrointestinal-specific staining for CK20, CDX2, CK7, and SATB2. Peritoneal cytology showed paucicellular mucin. Diffuse peritoneal adenomucinosis (DPAM) variant of PMP arising from a ruptured ovarian primary MCT after malignant transformation to a low-grade appendiceal-like mucinous neoplasm was ultimately confirmed. Treatment included staged therapeutic tumor debulking and right salpingo-oophorectomy followed by cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC). Conclusions: Our report builds upon the existing literature supporting this aggressive treatment option reserved for advanced abdominal malignancies utilized in this patient with a rare clinical entity

    Duplication events downstream of IRX1 cause North Carolina macular dystrophy at the MCDR3 locus

    Get PDF
    Autosomal dominant North Carolina macular dystrophy (NCMD) is believed to represent a failure of macular development. The disorder has been linked to two loci, MCDR1 (chromosome 6q16) and MCDR3 (chromosome 5p15-p13). Recently, non-coding variants upstream of PRDM13 (MCDR1) and a duplication including IRX1 (MCDR3) have been identified. However, the underlying disease-causing mechanism remains uncertain. Through a combination of sequencing studies on eighteen NCMD families, we report two novel overlapping duplications at the MCDR3 locus, in a gene desert downstream of IRX1 and upstream of ADAMTS16. One duplication of 43ā€‰kb was identified in nine families (with evidence for a shared ancestral haplotype), and another one of 45ā€‰kb was found in a single family. Three families carry the previously reported V2 variant (MCDR1), while five remain unsolved. The MCDR3 locus is thus refined to a shared region of 39ā€‰kb that contains DNAse hypersensitive sites active at a restricted time window during retinal development. Publicly available data confirmed expression of IRX1 and ADAMTS16 in human fetal retina, with IRX1 preferentially expressed in fetal macula. These findings represent a major advance in our understanding of the molecular genetics of NCMD and provide insights into the genetic pathways involved in human macular development
    • ā€¦
    corecore