66 research outputs found
The Ising model and Special Geometries
We show that the globally nilpotent G-operators corresponding to the factors
of the linear differential operators annihilating the multifold integrals
of the magnetic susceptibility of the Ising model () are
homomorphic to their adjoint. This property of being self-adjoint up to
operator homomorphisms, is equivalent to the fact that their symmetric square,
or their exterior square, have rational solutions. The differential Galois
groups are in the special orthogonal, or symplectic, groups. This self-adjoint
(up to operator equivalence) property means that the factor operators we
already know to be Derived from Geometry, are special globally nilpotent
operators: they correspond to "Special Geometries".
Beyond the small order factor operators (occurring in the linear differential
operators associated with and ), and, in particular,
those associated with modular forms, we focus on the quite large order-twelve
and order-23 operators. We show that the order-twelve operator has an exterior
square which annihilates a rational solution. Then, its differential Galois
group is in the symplectic group . The order-23 operator
is shown to factorize in an order-two operator and an order-21 operator. The
symmetric square of this order-21 operator has a rational solution. Its
differential Galois group is, thus, in the orthogonal group
.Comment: 33 page
Experimental mathematics on the magnetic susceptibility of the square lattice Ising model
We calculate very long low- and high-temperature series for the
susceptibility of the square lattice Ising model as well as very long
series for the five-particle contribution and six-particle
contribution . These calculations have been made possible by the
use of highly optimized polynomial time modular algorithms and a total of more
than 150000 CPU hours on computer clusters. For 10000 terms of the
series are calculated {\it modulo} a single prime, and have been used to find
the linear ODE satisfied by {\it modulo} a prime.
A diff-Pad\'e analysis of 2000 terms series for and
confirms to a very high degree of confidence previous conjectures about the
location and strength of the singularities of the -particle components of
the susceptibility, up to a small set of ``additional'' singularities. We find
the presence of singularities at for the linear ODE of ,
and for the ODE of , which are {\it not} singularities
of the ``physical'' and that is to say the
series-solutions of the ODE's which are analytic at .
Furthermore, analysis of the long series for (and )
combined with the corresponding long series for the full susceptibility
yields previously conjectured singularities in some , .
We also present a mechanism of resummation of the logarithmic singularities
of the leading to the known power-law critical behaviour occurring
in the full , and perform a power spectrum analysis giving strong
arguments in favor of the existence of a natural boundary for the full
susceptibility .Comment: 54 pages, 2 figure
Singularities of -fold integrals of the Ising class and the theory of elliptic curves
We introduce some multiple integrals that are expected to have the same
singularities as the singularities of the -particle contributions
to the susceptibility of the square lattice Ising model. We find
the Fuchsian linear differential equation satisfied by these multiple integrals
for and only modulo some primes for and , thus
providing a large set of (possible) new singularities of the . We
discuss the singularity structure for these multiple integrals by solving the
Landau conditions. We find that the singularities of the associated ODEs
identify (up to ) with the leading pinch Landau singularities. The second
remarkable obtained feature is that the singularities of the ODEs associated
with the multiple integrals reduce to the singularities of the ODEs associated
with a {\em finite number of one dimensional integrals}. Among the
singularities found, we underline the fact that the quadratic polynomial
condition , that occurs in the linear differential equation
of , actually corresponds to a remarkable property of selected
elliptic curves, namely the occurrence of complex multiplication. The
interpretation of complex multiplication for elliptic curves as complex fixed
points of the selected generators of the renormalization group, namely
isogenies of elliptic curves, is sketched. Most of the other singularities
occurring in our multiple integrals are not related to complex multiplication
situations, suggesting an interpretation in terms of (motivic) mathematical
structures beyond the theory of elliptic curves.Comment: 39 pages, 7 figure
The diagonal Ising susceptibility
We use the recently derived form factor expansions of the diagonal two-point
correlation function of the square Ising model to study the susceptibility for
a magnetic field applied only to one diagonal of the lattice, for the isotropic
Ising model.
We exactly evaluate the one and two particle contributions
and of the corresponding susceptibility, and obtain linear
differential equations for the three and four particle contributions, as well
as the five particle contribution , but only modulo a given
prime. We use these exact linear differential equations to show that, not only
the russian-doll structure, but also the direct sum structure on the linear
differential operators for the -particle contributions are
quite directly inherited from the direct sum structure on the form factors .
We show that the particle contributions have their
singularities at roots of unity. These singularities become dense on the unit
circle as .Comment: 18 page
Square lattice Ising model susceptibility: Series expansion method and differential equation for
In a previous paper (J. Phys. A {\bf 37} (2004) 9651-9668) we have given the
Fuchsian linear differential equation satisfied by , the
``three-particle'' contribution to the susceptibility of the isotropic square
lattice Ising model. This paper gives the details of the calculations (with
some useful tricks and tools) allowing one to obtain long series in polynomial
time. The method is based on series expansion in the variables that appear in
the -dimensional integrals representing the -particle contribution to
the isotropic square lattice Ising model susceptibility . The
integration rules are straightforward due to remarkable formulas we derived for
these variables. We obtain without any numerical approximation as
a fully integrated series in the variable , where , with the conventional Ising model coupling constant. We also
give some perspectives and comments on these results.Comment: 28 pages, no figur
Sheared Ising models in three dimensions
The nonequilibrium phase transition in sheared three-dimensional Ising models
is investigated using Monte Carlo simulations in two different geometries
corresponding to different shear normals. We demonstrate that in the high shear
limit both systems undergo a strongly anisotropic phase transition at exactly
known critical temperatures T_c which depend on the direction of the shear
normal. Using dimensional analysis, we determine the anisotropy exponent
theta=2 as well as the correlation length exponents nu_parallel=1 and
nu_perp=1/2. These results are verified by simulations, though considerable
corrections to scaling are found. The correlation functions perpendicular to
the shear direction can be calculated exactly and show Ornstein-Zernike
behavior.Comment: 6 pages, 3 figure
Holonomy of the Ising model form factors
We study the Ising model two-point diagonal correlation function by
presenting an exponential and form factor expansion in an integral
representation which differs from the known expansion of Wu, McCoy, Tracy and
Barouch. We extend this expansion, weighting, by powers of a variable
, the -particle contributions, . The corresponding
extension of the two-point diagonal correlation function, , is shown, for arbitrary , to be a solution of the sigma
form of the Painlev{\'e} VI equation introduced by Jimbo and Miwa. Linear
differential equations for the form factors are obtained and
shown to have both a ``Russian doll'' nesting, and a decomposition of the
differential operators as a direct sum of operators equivalent to symmetric
powers of the differential operator of the elliptic integral . Each is expressed polynomially in terms of the elliptic integrals and . The scaling limit of these differential operators breaks the
direct sum structure but not the ``Russian doll'' structure. The previous -extensions, are, for singled-out values ( integers), also solutions of linear differential
equations. These solutions of Painlev\'e VI are actually algebraic functions,
being associated with modular curves.Comment: 39 page
Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals
Lattice statistical mechanics, often provides a natural (holonomic) framework
to perform singularity analysis with several complex variables that would, in a
general mathematical framework, be too complex, or could not be defined.
Considering several Picard-Fuchs systems of two-variables "above" Calabi-Yau
ODEs, associated with double hypergeometric series, we show that holonomic
functions are actually a good framework for actually finding the singular
manifolds. We, then, analyse the singular algebraic varieties of the n-fold
integrals , corresponding to the decomposition of the magnetic
susceptibility of the anisotropic square Ising model. We revisit a set of
Nickelian singularities that turns out to be a two-parameter family of elliptic
curves. We then find a first set of non-Nickelian singularities for and , that also turns out to be rational or ellipic
curves. We underline the fact that these singular curves depend on the
anisotropy of the Ising model. We address, from a birational viewpoint, the
emergence of families of elliptic curves, and of Calabi-Yau manifolds on such
problems. We discuss the accumulation of these singular curves for the
non-holonomic anisotropic full susceptibility.Comment: 36 page
Fuchs versus Painlev\'e
We briefly recall the Fuchs-Painlev\'e elliptic representation of Painlev\'e
VI. We then show that the polynomiality of the expressions of the correlation
functions (and form factors) in terms of the complete elliptic integral of the
first and second kind,
and , is a straight consequence of the fact that the differential
operators corresponding to the entries of Toeplitz-like determinants, are
equivalent to the second order operator which has as solution (or,
for off-diagonal correlations to the direct sum of and ). We show
that this can be generalized, mutatis mutandis, to the anisotropic Ising model.
The singled-out second order linear differential operator being replaced
by an isomonodromic system of two third-order linear partial differential
operators associated with , the Jacobi's form of the complete elliptic
integral of the third kind (or equivalently two second order linear partial
differential operators associated with Appell functions, where one of these
operators can be seen as a deformation of ). We finally explore the
generalizations, to the anisotropic Ising models, of the links we made, in two
previous papers, between Painlev\'e non-linear ODE's, Fuchsian linear ODE's and
elliptic curves. In particular the elliptic representation of Painlev\'e VI has
to be generalized to an ``Appellian'' representation of Garnier systems.Comment: Dedicated to the : Special issue on Symmetries and Integrability of
Difference Equations, SIDE VII meeting held in Melbourne during July 200
Post-critical set and non existence of preserved meromorphic two-forms
We present a family of birational transformations in depending on
two, or three, parameters which does not, generically, preserve meromorphic
two-forms. With the introduction of the orbit of the critical set (vanishing
condition of the Jacobian), also called ``post-critical set'', we get some new
structures, some "non-analytic" two-form which reduce to meromorphic two-forms
for particular subvarieties in the parameter space. On these subvarieties, the
iterates of the critical set have a polynomial growth in the \emph{degrees of
the parameters}, while one has an exponential growth out of these subspaces.
The analysis of our birational transformation in is first carried out
using Diller-Favre criterion in order to find the complexity reduction of the
mapping. The integrable cases are found. The identification between the
complexity growth and the topological entropy is, one more time, verified. We
perform plots of the post-critical set, as well as calculations of Lyapunov
exponents for many orbits, confirming that generically no meromorphic two-form
can be preserved for this mapping. These birational transformations in ,
which, generically, do not preserve any meromorphic two-form, are extremely
similar to other birational transformations we previously studied, which do
preserve meromorphic two-forms. We note that these two sets of birational
transformations exhibit totally similar results as far as topological
complexity is concerned, but drastically different results as far as a more
``probabilistic'' approach of dynamical systems is concerned (Lyapunov
exponents). With these examples we see that the existence of a preserved
meromorphic two-form explains most of the (numerical) discrepancy between the
topological and probabilistic approach of dynamical systems.Comment: 34 pages, 7 figure
- …
