14 research outputs found
Insights into the evolution of mammalian telomerase: Platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes
Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT) ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in rayfinned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.Radmila Hrdličková, Jiří Nehyba, Shu Ly Lim, Frank Grützner, Henry R Bose J
Telomerase can act as a template- and RNA-independent terminal transferase
Telomerase is a special reverse transcriptase that extends one strand of the telomere repeat by using a template embedded in an RNA subunit. Like other polymerases, telomerase is believed to use a pair of divalent metal ions (coordinated by a triad of aspartic acid residues) for catalyzing nucleotide addition. Here we show that, in the presence of manganese, both yeast and human telomerase can switch to a template- and RNA-independent mode of DNA synthesis, acting in effect as a terminal transferase. Even as a terminal transferase, yeast telomerase retains a species-dependent preference for GT-rich, telomere-like DNA on the 5′ end of the substrate. The terminal transferase activity of telomerase may account for some of the hitherto unexplained effects of telomerase overexpression on cell physiology
