594 research outputs found

    Master Operators Govern Multifractality in Percolation

    Full text link
    Using renormalization group methods we study multifractality in percolation at the instance of noisy random resistor networks. We introduce the concept of master operators. The multifractal moments of the current distribution (which are proportional to the noise cumulants CR(l)(x,x)C_R^{(l)} (x, x^\prime) of the resistance between two sites x and xx^\prime located on the same cluster) are related to such master operators. The scaling behavior of the multifractal moments is governed exclusively by the master operators, even though a myriad of servant operators is involved in the renormalization procedure. We calculate the family of multifractal exponents ψl{\psi_l} for the scaling behavior of the noise cumulants, CR(l)(x,x)xxψl/νC_R^{(l)} (x, x^\prime) \sim | x - x^\prime |^{\psi_l /\nu}, where ν\nu is the correlation length exponent for percolation, to two-loop order.Comment: 6 page

    Logarithmic Corrections in Dynamic Isotropic Percolation

    Full text link
    Based on the field theoretic formulation of the general epidemic process we study logarithmic corrections to scaling in dynamic isotropic percolation at the upper critical dimension d=6. Employing renormalization group methods we determine these corrections for some of the most interesting time dependent observables in dynamic percolation at the critical point up to and including the next to leading correction. For clusters emanating from a local seed at the origin we calculate the number of active sites, the survival probability as well as the radius of gyration.Comment: 9 pages, 3 figures, version to appear in Phys. Rev.

    Weakly Coupled Motion of Individual Layers in Ferromagnetic Resonance

    Full text link
    We demonstrate a layer- and time-resolved measurement of ferromagnetic resonance (FMR) in a Ni81Fe19 / Cu / Co93Zr7 trilayer structure. Time-resolved x-ray magnetic circular dichroism has been developed in transmission, with resonant field excitation at a FMR frequency of 2.3 GHz. Small-angle (to 0.2 degree), time-domain magnetization precession could be observed directly, and resolved to individual layers through elemental contrast at Ni, Fe, and Co edges. The phase sensitivity allowed direct measurement of relative phase lags in the precession oscillations of individual elements and layers. A weak ferromagnetic coupling, difficult to ascertain in conventional FMR measurements, is revealed in the phase and amplitude response of individual layers across resonance.Comment: 22 pages, 6 figures submitted to Physical Review

    Percolation Threshold, Fisher Exponent, and Shortest Path Exponent for 4 and 5 Dimensions

    Full text link
    We develop a method of constructing percolation clusters that allows us to build very large clusters using very little computer memory by limiting the maximum number of sites for which we maintain state information to a number of the order of the number of sites in the largest chemical shell of the cluster being created. The memory required to grow a cluster of mass s is of the order of sθs^\theta bytes where θ\theta ranges from 0.4 for 2-dimensional lattices to 0.5 for 6- (or higher)-dimensional lattices. We use this method to estimate dmind_{\scriptsize min}, the exponent relating the minimum path \ell to the Euclidean distance r, for 4D and 5D hypercubic lattices. Analyzing both site and bond percolation, we find dmin=1.607±0.005d_{\scriptsize min}=1.607\pm 0.005 (4D) and dmin=1.812±0.006d_{\scriptsize min}=1.812\pm 0.006 (5D). In order to determine dmind_{\scriptsize min} to high precision, and without bias, it was necessary to first find precise values for the percolation threshold, pcp_c: pc=0.196889±0.000003p_c=0.196889\pm 0.000003 (4D) and pc=0.14081±0.00001p_c=0.14081\pm 0.00001 (5D) for site and pc=0.160130±0.000003p_c=0.160130\pm 0.000003 (4D) and pc=0.118174±0.000004p_c=0.118174\pm 0.000004 (5D) for bond percolation. We also calculate the Fisher exponent, τ\tau, determined in the course of calculating the values of pcp_c: τ=2.313±0.003\tau=2.313\pm 0.003 (4D) and τ=2.412±0.004\tau=2.412\pm 0.004 (5D)

    On the relevance of percolation theory to the vulcanization transition

    Full text link
    The relationship between vulcanization and percolation is explored from the perspective of renormalized local field theory. We show rigorously that the vulcanization and percolation correlation functions are governed by the same Gell--Mann-Low renormalization group equation. Hence, all scaling aspects of the vulcanization transition are reigned by the critical exponents of the percolation universality class.Comment: 9 pages, 2 figure

    Bohmian mechanics, the quantum-classical correspondence and the classical limit: the case of the square billiard

    Full text link
    Square billiards are quantum systems complying with the dynamical quantum-classical correspondence. Hence an initially localized wavefunction launched along a classical periodic orbit evolves along that orbit, the spreading of the quantum amplitude being controlled by the spread of the corresponding classical statistical distribution. We investigate wavepacket dynamics and compute the corresponding de Broglie-Bohm trajectories in the quantum square billiard. We also determine the trajectories and statistical distribution dynamics for the equivalent classical billiard. Individual Bohmian trajectories follow the streamlines of the probability flow and are generically non-classical. This can also hold even for short times, when the wavepacket is still localized along a classical trajectory. This generic feature of Bohmian trajectories is expected to hold in the classical limit. We further argue that in this context decoherence cannot constitute a viable solution in order to recover classicality.Comment: Figures downgraded to low resolution; To be published in Found. Phys. (2009)

    Noisy random resistor networks: renormalized field theory for the multifractal moments of the current distribution

    Full text link
    We study the multifractal moments of the current distribution in randomly diluted resistor networks near the percolation treshold. When an external current is applied between to terminals xx and xx^\prime of the network, the llth multifractal moment scales as MI(l)(x,x)xxψl/νM_I^{(l)} (x, x^\prime) \sim | x - x^\prime |^{\psi_l /\nu}, where ν\nu is the correlation length exponent of the isotropic percolation universality class. By applying our concept of master operators [Europhys. Lett. {\bf 51}, 539 (2000)] we calculate the family of multifractal exponents {ψl}\{\psi_l \} for l0l \geq 0 to two-loop order. We find that our result is in good agreement with numerical data for three dimensions.Comment: 30 pages, 6 figure

    The Critical Behaviour of the Spin-3/2 Blume-Capel Model in Two Dimensions

    Full text link
    The phase diagram of the spin-3/2 Blume-Capel model in two dimensions is explored by conventional finite-size scaling, conformal invariance and Monte Carlo simulations. The model in its τ\tau-continuum Hamiltonian version is also considered and compared with others spin-3/2 quantum chains. Our results indicate that differently from the standard spin-1 Blume-Capel model there is no multicritical point along the order-disorder transition line. This is in qualitative agreement with mean field prediction but in disagreement with previous approximate renormalization group calculations. We also presented new results for the spin-1 Blume-Capel model.Comment: latex 18 pages, 4 figure

    Intermediate temperature dynamics of one-dimensional Heisenberg antiferromagnets

    Full text link
    We present a general theory for the intermediate temperature (T) properties of Heisenberg antiferromagnets of spin-S ions on p-leg ladders, valid for 2Sp even or odd. Following an earlier proposal for 2Sp even (Damle and Sachdev, cond-mat/9711014), we argue that an integrable, classical, continuum model of a fixed-length, 3-vector applies over an intermediate temperature range; this range becomes very wide for moderate and large values of 2Sp. The coupling constants of the effective model are known exactly in terms of the energy gap above the ground state (for 2Sp even) or a crossover scale (for 2Sp odd). Analytic and numeric results for dynamic and transport properties are obtained, including some exact results for the spin-wave damping. Numerous quantitative predictions for neutron scattering and NMR experiments are made. A general discussion on the nature of T>0 transport in integrable systems is also presented: an exact solution of a toy model proves that diffusion can exist in integrable systems, provided proper care is taken in approaching the thermodynamic limit.Comment: 38 pages, including 12 figure

    Effects of surfaces on resistor percolation

    Full text link
    We study the effects of surfaces on resistor percolation at the instance of a semi-infinite geometry. Particularly we are interested in the average resistance between two connected ports located on the surface. Based on general grounds as symmetries and relevance we introduce a field theoretic Hamiltonian for semi-infinite random resistor networks. We show that the surface contributes to the average resistance only in terms of corrections to scaling. These corrections are governed by surface resistance exponents. We carry out renormalization group improved perturbation calculations for the special and the ordinary transition. We calculate the surface resistance exponents \phi_{\mathcal S \mathnormal} and \phi_{\mathcal S \mathnormal}^\infty for the special and the ordinary transition, respectively, to one-loop order.Comment: 19 pages, 3 figure
    corecore