825 research outputs found

    Statistical modeling of ground motion relations for seismic hazard analysis

    Full text link
    We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area-equivalence; wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GMRs (an actual and a modeled one) as a random component leads to a general overestimation of residual variance and hazard. Beside this, we discuss important aspects of classical approaches and discover discrepancies with the state of the art of stochastics and statistics (model selection and significance, test of distribution assumptions, extreme value statistics). We criticize especially the assumption of logarithmic normally distributed residuals of maxima like the peak ground acceleration (PGA). The natural distribution of its individual random component (equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized extreme value. We show by numerical researches that the actual distribution can be hidden and a wrong distribution assumption can influence the PSHA negatively as the negligence of area equivalence does. Finally, we suggest an estimation concept for GMRs of PSHA with a regression-free variance estimation of the individual random component. We demonstrate the advantages of event-specific GMRs by analyzing data sets from the PEER strong motion database and estimate event-specific GMRs. Therein, the majority of the best models base on an anisotropic point source approach. The residual variance of logarithmized PGA is significantly smaller than in previous models. We validate the estimations for the event with the largest sample by empirical area functions. etc

    Autonomous decision-making against induced seismicity in deep fluid injections

    Full text link
    The rise in the frequency of anthropogenic earthquakes due to deep fluid injections is posing serious economic, societal, and legal challenges to geo-energy and waste-disposal projects. We propose an actuarial approach to mitigate this risk, first by defining an autonomous decision-making process based on an adaptive traffic light system (ATLS) to stop risky injections, and second by quantifying a "cost of public safety" based on the probability of an injection-well being abandoned. The ATLS underlying statistical model is first confirmed to be representative of injection-induced seismicity, with examples taken from past reservoir stimulation experiments (mostly from Enhanced Geothermal Systems, EGS). Then the decision strategy is formalized: Being integrable, the model yields a closed-form ATLS solution that maps a risk-based safety standard or norm to an earthquake magnitude not to exceed during stimulation. Finally, the EGS levelized cost of electricity (LCOE) is reformulated in terms of null expectation, with the cost of abandoned injection-well implemented. We find that the price increase to mitigate the increased seismic risk in populated areas can counterbalance the heat credit. However this "public safety cost" disappears if buildings are based on earthquake-resistant designs or if a more relaxed risk safety standard or norm is chosen.Comment: 8 pages, 4 figures, conference (International Symposium on Energy Geotechnics, 26-28 September 2018, Lausanne, Switzerland

    Electric field tunable superconductor-semiconductor coupling in Majorana nanowires

    Get PDF
    We study the effect of external electric fields on superconductor-semiconductor coupling by measuring the electron transport in InSb semiconductor nanowires coupled to an epitaxially grown Al superconductor. We find that the gate voltage induced electric fields can greatly modify the coupling strength, which has consequences for the proximity induced superconducting gap, effective g-factor, and spin-orbit coupling, which all play a key role in understanding Majorana physics. We further show that level repulsion due to spin-orbit coupling in a finite size system can lead to seemingly stable zero bias conductance peaks, which mimic the behavior of Majorana zero modes. Our results improve the understanding of realistic Majorana nanowire systems.Comment: 10 pages, 5 figures, supplemental information as ancillary fil

    Quantized Majorana conductance

    Full text link
    Majorana zero-modes hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool to identify the presence of Majorana zero-modes, for instance as a zero-bias peak (ZBP) in differential-conductance. The Majorana ZBP-height is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature. Interestingly, this quantization is a direct consequence of the famous Majorana symmetry, 'particle equals antiparticle'. The Majorana symmetry protects the quantization against disorder, interactions, and variations in the tunnel coupling. Previous experiments, however, have shown ZBPs much smaller than 2e2/h, with a recent observation of a peak-height close to 2e2/h. Here, we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in InSb semiconductor nanowires covered with an Al superconducting shell. Our ZBP-height remains constant despite changing parameters such as the magnetic field and tunnel coupling, i.e. a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins, by investigating its robustness on electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of non-Abelian Majorana zero-modes in the system, consequently paving the way for future braiding experiments.Comment: 5 figure

    Recent evolution of an ice‐cored moraine at the Gentianes Pass, Valais Alps, Switzerland

    Get PDF
    International audienceLateral moraines located in permafrost environments often preserve large amounts of both glacier and periglacial ice. To understand how ice‐cored moraines located in high alpine environments evolve in a context of both glacier retreat and permafrost degradation, we performed 11 terrestrial laser‐scanning measurement campaigns between 2007 and 2014 on a highly anthropogenic overprinted moraine prone to instability. Resulting comparison of the subsequent 3D models allowed to qualitatively and quantitatively analyze the morphological evolution of the moraine. The comparisons indicate a very high geomorphic activity of the moraine including large areas affected by downslope movements of blocks and 10 landslides with a volume between 24 ± 1 and 1,138 ± 47 m3. Data also indicated a very strong ice melt with a loss of ice thickness locally reaching 17.7 m at the foot of the moraine. These results, compared with resistivity and thermal measurements of the ground, suggest the combined role of ice loss at the foot of the moraine and the permafrost activity/warming in triggering these processes

    Hazard and risk assessments for induced seismicity in Groningen

    No full text
    Earthquakes associated with gas production have been recorded in the northern part of the Netherlands since 1986. The Huizinge earthquake of 16 August 2012, the strongest so far with a magnitude of M L = 3.6, prompted reassessment of the seismicity induced by production from the Groningen gas field. An international research programme was initiated, with the participation of many Dutch and international universities, knowledge institutes and recognised experts. The prime aim of the programme was to assess the hazard and risk resulting from the induced seismicity. Classic probabilistic seismic hazard and risk assessment (PSHA) was implemented using a Monte Carlo method. The scope of the research programme extended from the cause (production of gas from the underground reservoir) to the effects (risk to people and damage to buildings). Data acquisition through field measurements and laboratory experiments was a substantial element of the research programme. The existing geophone and accelerometer monitoring network was extended, a new network of accelerometers in building foundations was installed, geophones were placed at reservoir level in deep wells, GPS stations were installed and a gravity survey was conducted. Results of the probabilistic seismic hazard and risk assessment have been published in production plans submitted to the Minister of Economic Affairs, Winningsplan Groningen 2013 and 2016 and several intermediate updates. The studies and data acquisition further constrained the uncertainties and resulted in a reduction of the initially assessed hazard and risk

    Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation

    Get PDF
    Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome
    corecore