923 research outputs found
An evaluation of the applicability of the NGA models to ground-motion prediction in the Euro-Mediterranean region
Autonomous decision-making against induced seismicity in deep fluid injections
The rise in the frequency of anthropogenic earthquakes due to deep fluid
injections is posing serious economic, societal, and legal challenges to
geo-energy and waste-disposal projects. We propose an actuarial approach to
mitigate this risk, first by defining an autonomous decision-making process
based on an adaptive traffic light system (ATLS) to stop risky injections, and
second by quantifying a "cost of public safety" based on the probability of an
injection-well being abandoned. The ATLS underlying statistical model is first
confirmed to be representative of injection-induced seismicity, with examples
taken from past reservoir stimulation experiments (mostly from Enhanced
Geothermal Systems, EGS). Then the decision strategy is formalized: Being
integrable, the model yields a closed-form ATLS solution that maps a risk-based
safety standard or norm to an earthquake magnitude not to exceed during
stimulation. Finally, the EGS levelized cost of electricity (LCOE) is
reformulated in terms of null expectation, with the cost of abandoned
injection-well implemented. We find that the price increase to mitigate the
increased seismic risk in populated areas can counterbalance the heat credit.
However this "public safety cost" disappears if buildings are based on
earthquake-resistant designs or if a more relaxed risk safety standard or norm
is chosen.Comment: 8 pages, 4 figures, conference (International Symposium on Energy
Geotechnics, 26-28 September 2018, Lausanne, Switzerland
Statistical modeling of ground motion relations for seismic hazard analysis
We introduce a new approach for ground motion relations (GMR) in the
probabilistic seismic hazard analysis (PSHA), being influenced by the extreme
value theory of mathematical statistics. Therein, we understand a GMR as a
random function. We derive mathematically the principle of area-equivalence;
wherein two alternative GMRs have an equivalent influence on the hazard if
these GMRs have equivalent area functions. This includes local biases. An
interpretation of the difference between these GMRs (an actual and a modeled
one) as a random component leads to a general overestimation of residual
variance and hazard. Beside this, we discuss important aspects of classical
approaches and discover discrepancies with the state of the art of stochastics
and statistics (model selection and significance, test of distribution
assumptions, extreme value statistics). We criticize especially the assumption
of logarithmic normally distributed residuals of maxima like the peak ground
acceleration (PGA). The natural distribution of its individual random component
(equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized
extreme value. We show by numerical researches that the actual distribution can
be hidden and a wrong distribution assumption can influence the PSHA negatively
as the negligence of area equivalence does. Finally, we suggest an estimation
concept for GMRs of PSHA with a regression-free variance estimation of the
individual random component. We demonstrate the advantages of event-specific
GMRs by analyzing data sets from the PEER strong motion database and estimate
event-specific GMRs. Therein, the majority of the best models base on an
anisotropic point source approach. The residual variance of logarithmized PGA
is significantly smaller than in previous models. We validate the estimations
for the event with the largest sample by empirical area functions. etc
Quantized Majorana conductance
Majorana zero-modes hold great promise for topological quantum computing.
Tunnelling spectroscopy in electrical transport is the primary tool to identify
the presence of Majorana zero-modes, for instance as a zero-bias peak (ZBP) in
differential-conductance. The Majorana ZBP-height is predicted to be quantized
at the universal conductance value of 2e2/h at zero temperature. Interestingly,
this quantization is a direct consequence of the famous Majorana symmetry,
'particle equals antiparticle'. The Majorana symmetry protects the quantization
against disorder, interactions, and variations in the tunnel coupling. Previous
experiments, however, have shown ZBPs much smaller than 2e2/h, with a recent
observation of a peak-height close to 2e2/h. Here, we report a quantized
conductance plateau at 2e2/h in the zero-bias conductance measured in InSb
semiconductor nanowires covered with an Al superconducting shell. Our
ZBP-height remains constant despite changing parameters such as the magnetic
field and tunnel coupling, i.e. a quantized conductance plateau. We distinguish
this quantized Majorana peak from possible non-Majorana origins, by
investigating its robustness on electric and magnetic fields as well as its
temperature dependence. The observation of a quantized conductance plateau
strongly supports the existence of non-Abelian Majorana zero-modes in the
system, consequently paving the way for future braiding experiments.Comment: 5 figure
Electric field tunable superconductor-semiconductor coupling in Majorana nanowires
We study the effect of external electric fields on
superconductor-semiconductor coupling by measuring the electron transport in
InSb semiconductor nanowires coupled to an epitaxially grown Al superconductor.
We find that the gate voltage induced electric fields can greatly modify the
coupling strength, which has consequences for the proximity induced
superconducting gap, effective g-factor, and spin-orbit coupling, which all
play a key role in understanding Majorana physics. We further show that level
repulsion due to spin-orbit coupling in a finite size system can lead to
seemingly stable zero bias conductance peaks, which mimic the behavior of
Majorana zero modes. Our results improve the understanding of realistic
Majorana nanowire systems.Comment: 10 pages, 5 figures, supplemental information as ancillary fil
Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation
Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome
Recommended from our members
Synthesis of accelerograms compatible with the Chinese GB 50011-2001 design spectrum via harmonic wavelets: artificial and historic records
A versatile approach is employed to generate artificial accelerograms which satisfy the compatibility criteria prescribed by the Chinese aseismic code provisions GB 50011-2001. In particular, a frequency dependent peak factor derived by means of appropriate Monte Carlo analyses is introduced to relate the GB 50011-2001 design spectrum to a parametrically defined evolutionary power spectrum (EPS). Special attention is given to the definition of the frequency content of the EPS in order to accommodate the mathematical form of the aforementioned design spectrum. Further, a one-to-one relationship is established between the parameter controlling the time-varying intensity of the EPS and the effective strong ground motion duration. Subsequently, an efficient auto-regressive moving-average (ARMA) filtering technique is utilized to generate ensembles of non-stationary artificial accelerograms whose average response spectrum is in a close agreement with the considered design spectrum. Furthermore, a harmonic wavelet based iterative scheme is adopted to modify these artificial signals so that a close matching of the signals’ response spectra with the GB 50011-2001 design spectrum is achieved on an individual basis. This is also done for field recorded accelerograms pertaining to the May, 2008 Wenchuan seismic event. In the process, zero-phase high-pass filtering is performed to accomplish proper baseline correction of the acquired spectrum compatible artificial and field accelerograms. Numerical results are given in a tabulated format to expedite their use in practice
Derivation of consistent hard rock (1000<Vs<3000 m/s) GMPEs from surface and down-hole recordings: Analysis of KiK-net data
A key component in seismic hazard assessment is the estimation of ground motion for hard rock sites, either for applications to installations built on this site category, or as an input motion for site response computation. Empirical ground motion prediction equations (GMPEs) are the traditional basis for estimating ground motion while VS30 is the basis to account for site conditions. As current GMPEs are poorly constrained for VS30 larger than 1000 m/s, the presently used approach for estimating hazard on hard rock sites consists of “host-to-target” adjustment techniques based on VS30 and κ0 values. The present study investigates alternative methods on the basis of a KiK-net dataset corresponding to stiff and rocky sites with 500 < VS30 < 1350 m/s. The existence of sensor pairs (one at the surface and one in depth) and the availability of P- and S-wave velocity profiles allow deriving two “virtual” datasets associated to outcropping hard rock sites with VS in the range [1000, 3000] m/s with two independent corrections: 1/down-hole recordings modified from within motion to outcropping motion with a depth correction factor, 2/surface recordings deconvolved from their specific site response derived through 1D simulation. GMPEs with simple functional forms are then developed, including a VS30 site term. They lead to consistent and robust hard-rock motion estimates, which prove to be significantly lower than host-to-target adjustment predictions. The difference can reach a factor up to 3–4 beyond 5 Hz for very hard-rock, but decreases for decreasing frequency until vanishing below 2 Hz
- …
