1,776 research outputs found
Anisotropic magnetoresistance and anisotropic tunneling magnetoresistance due to quantum interference in ferromagnetic metal break junctions
We measure the low-temperature resistance of permalloy break junctions as a
function of contact size and the magnetic field angle, in applied fields large
enough to saturate the magnetization. For both nanometer-scale metallic
contacts and tunneling devices we observe large changes in resistance with
angle, as large as 25% in the tunneling regime. The pattern of
magnetoresistance is sensitive to changes in bias on a scale of a few mV. We
interpret the effect as a consequence of conductance fluctuations due to
quantum interference.Comment: 4 pages, 4 figures. Changes in response to reviewer comments. New
data provide information about the mechanism causing the AMR and TAM
Metal-nanoparticle single-electron transistors fabricated using electromigration
We have fabricated single-electron transistors from individual metal
nanoparticles using a geometry that provides improved coupling between the
particle and the gate electrode. This is accomplished by incorporating a
nanoparticle into a gap created between two electrodes using electromigration,
all on top of an oxidized aluminum gate. We achieve sufficient gate coupling to
access more than ten charge states of individual gold nanoparticles (5-15 nm in
diameter). The devices are sufficiently stable to permit spectroscopic studies
of the electron-in-a-box level spectra within the nanoparticle as its charge
state is varied.Comment: 3 pages, 3 figures, submitted to AP
From ballistic transport to tunneling in electromigrated ferromagnetic breakjunctions
We fabricate ferromagnetic nanowires with constrictions whose cross section
can be reduced gradually from 100 nm to the atomic scale and eventually to the
tunneling regime by means of electromigration. These devices are mechanically
stable against magnetostriction and magnetostatic effects. We measure
magnetoresistances ~ 0.3% for 100*30 nm^2 constrictions, increasing to a
maximum of 80% for atomic-scale widths. These results are consistent with a
geometrically-constrained domain wall trapped at the constriction. For the
devices in the tunneling regime we observe large fluctuations in MR, between
-10 and 85%.Comment: 4 pages, 5 figure
Shilnikov Lemma for a nondegenerate critical manifold of a Hamiltonian system
We prove an analog of Shilnikov Lemma for a normally hyperbolic symplectic
critical manifold of a Hamiltonian system. Using this
result, trajectories with small energy shadowing chains of homoclinic
orbits to are represented as extremals of a discrete variational problem,
and their existence is proved. This paper is motivated by applications to the
Poincar\'e second species solutions of the 3 body problem with 2 masses small
of order . As , double collisions of small bodies correspond to
a symplectic critical manifold of the regularized Hamiltonian system
Expanding Universe: slowdown or speedup?
The kinematics and dynamic interpretation of the cosmological expansion is
reviewed in a widely accessible manner with emphasis on the acceleration
aspect. Virtually all the approaches that can in principle account for the
accelerated expansion of the Universe are reviewed, including dark energy as an
item in the energy budget of the Universe; modified Einstein equations; and, on
a fundamentally new level, the use of the holographic principle.Comment: 70 pages, 16 figures, 1 tables. corrected some error
Phase-space correlations of chaotic eigenstates
It is shown that the Husimi representations of chaotic eigenstates are
strongly correlated along classical trajectories. These correlations extend
across the whole system size and, unlike the corresponding eigenfunction
correlations in configuration space, they persist in the semiclassical limit. A
quantitative theory is developed on the basis of Gaussian wavepacket dynamics
and random-matrix arguments. The role of symmetries is discussed for the
example of time-reversal invariance.Comment: Published version with minor corrections to version
Anisotropic magnetoresistance in nanocontacts
We present ab initio calculations of the evolution of anisotropic
magnetoresistance (AMR) in Ni nanocontacts from the ballistic to the tunnel
regime. We find an extraordinary enhancement of AMR, compared to bulk, in two
scenarios. In systems without localized states, like chemically pure break
junctions, large AMR only occurs if the orbital polarization of the current is
large, regardless of the anisotropy of the density of states. In systems that
display localized states close to the Fermi energy, like a single electron
transistor with ferromagnetic electrodes, large AMR is related to the variation
of the Fermi energy as a function of the magnetization direction.Comment: 7 pages, 4 figures; revised for publication, new figures in greyscal
- …
