2,120 research outputs found

    Marshall University Music Department Presents a Graduate Recital, featuring, Briana D. Blankenship, trumpet

    Get PDF
    https://mds.marshall.edu/music_perf/1304/thumbnail.jp

    A revised inventory of Antarctic subglacial lakes

    Get PDF
    The locations and details of 145 Antarctic subglacial lakes are presented. The inventory is based on a former catalogue of lake-type features, which has been subsequently reanalysed, and on the results from three additional datasets. The first is from Italian radio-echo sounding (RES) of the Dome C region of East Antarctica, from which 14 new lakes are identified. These data also show that, in a number of occasions, multiple take-type reflectors thought previously to be individual lakes are in fact reflections from the same relatively large take. This reduces the former total of lake-type reflectors by six, but also adds a significant level of information to these particular lakes. The second dataset is from a Russian survey of the Dome A and Dome F regions of East Antarctica, which provides evidence of 18 new lakes and extends the coverage of the inventory considerably. The third dataset comprises three airborne RES surveys under-taken by the US in East Antarctica over the last five years, from which forty three new lakes have been identified. Reference to information on Lake Vostok, from Italian and US surveys taken in the last few years, is now included

    Topology and energy transport in networks of interacting photosynthetic complexes

    Get PDF
    We address the role of topology in the energy transport process that occurs in networks of photosynthetic complexes. We take inspiration from light harvesting networks present in purple bacteria and simulate an incoherent dissipative energy transport process on more general and abstract networks, considering both regular structures (Cayley trees and hyperbranched fractals) and randomly-generated ones. We focus on the the two primary light harvesting complexes of purple bacteria, i.e., the LH1 and LH2, and we use network-theoretical centrality measures in order to select different LH1 arrangements. We show that different choices cause significant differences in the transport efficiencies, and that for regular networks centrality measures allow to identify arrangements that ensure transport efficiencies which are better than those obtained with a random disposition of the complexes. The optimal arrangements strongly depend on the dissipative nature of the dynamics and on the topological properties of the networks considered, and depending on the latter they are achieved by using global vs. local centrality measures. For randomly-generated networks a random arrangement of the complexes already provides efficient transport, and this suggests the process is strong with respect to limited amount of control in the structure design and to the disorder inherent in the construction of randomly-assembled structures. Finally, we compare the networks considered with the real biological networks and find that the latter have in general better performances, due to their higher connectivity, but the former with optimal arrangements can mimic the real networks' behaviour for a specific range of transport parameters. These results show that the use of network-theoretical concepts can be crucial for the characterization and design of efficient artificial energy transport networks.Comment: 14 pages, 16 figures, revised versio

    The South Australian Heat Flow Anomaly in east Antarctica: hot rocks in a cool place.

    Get PDF
    第3回極域科学シンポジウム/第32回極域地学シンポジウム 11月30日(金) 統計数理研究所 3階セミナー

    Impact of Infant Feeding Choice on Maternal Body Mass Index at Six Months Postpartum

    Get PDF

    Imaging bedrock topography and geological controls on ice streams flowing in the Wilkes Subglacial Basin sector of East Antarctica

    Get PDF
    The northern Wilkes Subglacial Basin (NWSB) in East Antarctica underlies the catchments of the Matusevich, Cook, Ninnis and Mertz Glaciers, which are largely marine-based and hence particularly sensitive to past and future ocean and climate warming. Here we use airborne radar, aeromagnetic and airborne gravity data to image bedrock topography, subglacial geology and deeper crustal structure and assess its influence on ice sheet dynamics in the NWSB. The previously identified Central Basins extend beneath the fast flowing Cook ice streams, indicating that potential ocean-induced changes could propagate further into the interior of the ice sheet. By analogy with the better exposed Rennick Graben in northern Victoria Land, these deep subglacial basins are interpreted here as grabens that steer fast glacial flow. With the aid of depth to source estimates and forward magnetic and gravity models, we image the 3D variability in geological basal boundary conditions, including Beacon sediments and Jurassic basaltic rocks and uplifted basement blocks within and along the flanks of these grabens. A remarkable contrast in magnetic anomaly signatures is observed over the coastal and inland segments of the Cook ice stream catchment. We model several km thick early Cambrian to late Neoproterozoic sedimentary basins in the basement of the coastal region, in contrast to a prominent Proterozoic basement high at the onset of fast glacial flow further inland. We further hypothesise that this difference affects geothermal heat flux at the base of the ice sheet, which could in turn influence basal melting and subglacial hydrology

    Ensuring Payload Safety in Missions with Special Partnerships

    Get PDF
    The National Aeronautics and Space Administration (NASA) Expendable Launch Vehicle (ELV) payload space flight missions involve cooperative work between NASA and partners including spacecraft (or payload) contractors, universities, nonprofit research centers, Agency payload organization, Range Safety organization, Agency launch service organizations, and launch vehicle contractors. The role of NASA's Safety and Mission Assurance (SMA) Directorate is typically fairly straightforward, but when a mission's partnerships become more complex, to realize cost and science benefits (e.g., multi-agency payload(s) or cooperative international missions), the task of ensuring payload safety becomes much more challenging. This paper discusses lessons learned from NASA safety professionals working multiple-agency missions and offers suggestions to help fellow safety professionals working multiple-agency missions
    corecore