1,949 research outputs found
A Formal Proof of the Expressiveness of Deep Learning
International audienceDeep learning has had a profound impact on computer science in recent years, with applications to image recognition, language processing, bioinformatics, and more. Recently , Cohen et al. provided theoretical evidence for the superiority of deep learning over shallow learning. We formalized their mathematical proof using Isabelle/HOL. The Isabelle development simplifies and generalizes the original proof, while working around the limitations of the HOL type system. To support the formalization, we developed reusable libraries of formalized mathematics, including results about the matrix rank, the Borel measure, and multivariate polynomials as well as a library for tensor analysis
Interactive Simplifier Tracing and Debugging in Isabelle
The Isabelle proof assistant comes equipped with a very powerful tactic for
term simplification. While tremendously useful, the results of simplifying a
term do not always match the user's expectation: sometimes, the resulting term
is not in the form the user expected, or the simplifier fails to apply a rule.
We describe a new, interactive tracing facility which offers insight into the
hierarchical structure of the simplification with user-defined filtering,
memoization and search. The new simplifier trace is integrated into the
Isabelle/jEdit Prover IDE.Comment: Conferences on Intelligent Computer Mathematics, 201
A Proof Strategy Language and Proof Script Generation for Isabelle/HOL
We introduce a language, PSL, designed to capture high level proof strategies
in Isabelle/HOL. Given a strategy and a proof obligation, PSL's runtime system
generates and combines various tactics to explore a large search space with low
memory usage. Upon success, PSL generates an efficient proof script, which
bypasses a large part of the proof search. We also present PSL's monadic
interpreter to show that the underlying idea of PSL is transferable to other
ITPs.Comment: This paper has been submitted to CADE2
An implementation of Deflate in Coq
The widely-used compression format "Deflate" is defined in RFC 1951 and is
based on prefix-free codings and backreferences. There are unclear points about
the way these codings are specified, and several sources for confusion in the
standard. We tried to fix this problem by giving a rigorous mathematical
specification, which we formalized in Coq. We produced a verified
implementation in Coq which achieves competitive performance on inputs of
several megabytes. In this paper we present the several parts of our
implementation: a fully verified implementation of canonical prefix-free
codings, which can be used in other compression formats as well, and an elegant
formalism for specifying sophisticated formats, which we used to implement both
a compression and decompression algorithm in Coq which we formally prove
inverse to each other -- the first time this has been achieved to our
knowledge. The compatibility to other Deflate implementations can be shown
empirically. We furthermore discuss some of the difficulties, specifically
regarding memory and runtime requirements, and our approaches to overcome them
ENIGMA: Efficient Learning-based Inference Guiding Machine
ENIGMA is a learning-based method for guiding given clause selection in
saturation-based theorem provers. Clauses from many proof searches are
classified as positive and negative based on their participation in the proofs.
An efficient classification model is trained on this data, using fast
feature-based characterization of the clauses . The learned model is then
tightly linked with the core prover and used as a basis of a new parameterized
evaluation heuristic that provides fast ranking of all generated clauses. The
approach is evaluated on the E prover and the CASC 2016 AIM benchmark, showing
a large increase of E's performance.Comment: Submitted to LPAR 201
A Vernacular for Coherent Logic
We propose a simple, yet expressive proof representation from which proofs
for different proof assistants can easily be generated. The representation uses
only a few inference rules and is based on a frag- ment of first-order logic
called coherent logic. Coherent logic has been recognized by a number of
researchers as a suitable logic for many ev- eryday mathematical developments.
The proposed proof representation is accompanied by a corresponding XML format
and by a suite of XSL transformations for generating formal proofs for
Isabelle/Isar and Coq, as well as proofs expressed in a natural language form
(formatted in LATEX or in HTML). Also, our automated theorem prover for
coherent logic exports proofs in the proposed XML format. All tools are
publicly available, along with a set of sample theorems.Comment: CICM 2014 - Conferences on Intelligent Computer Mathematics (2014
Hidden breakpoints in genome alignments
During the course of evolution, an organism's genome can undergo changes that
affect the large-scale structure of the genome. These changes include gene
gain, loss, duplication, chromosome fusion, fission, and rearrangement. When
gene gain and loss occurs in addition to other types of rearrangement,
breakpoints of rearrangement can exist that are only detectable by comparison
of three or more genomes. An arbitrarily large number of these "hidden"
breakpoints can exist among genomes that exhibit no rearrangements in pairwise
comparisons.
We present an extension of the multichromosomal breakpoint median problem to
genomes that have undergone gene gain and loss. We then demonstrate that the
median distance among three genomes can be used to calculate a lower bound on
the number of hidden breakpoints present. We provide an implementation of this
calculation including the median distance, along with some practical
improvements on the time complexity of the underlying algorithm.
We apply our approach to measure the abundance of hidden breakpoints in
simulated data sets under a wide range of evolutionary scenarios. We
demonstrate that in simulations the hidden breakpoint counts depend strongly on
relative rates of inversion and gene gain/loss. Finally we apply current
multiple genome aligners to the simulated genomes, and show that all aligners
introduce a high degree of error in hidden breakpoint counts, and that this
error grows with evolutionary distance in the simulation. Our results suggest
that hidden breakpoint error may be pervasive in genome alignments.Comment: 13 pages, 4 figure
A formalized general theory of syntax with bindings
We present the formalization of a theory of syntax with bindings that has been developed and refined over the last decade to support several large formalization efforts. Terms are defined for an arbitrary number of constructors of varying numbers of inputs, quotiented to alpha-equivalence and sorted according to a binding signature. The theory includes a rich collection of properties of the standard operators on terms, such as substitution and freshness. It also includes induction and recursion principles and support for semantic interpretation, all tailored for smooth interaction with the bindings and the standard operators
Witnessing (co)datatypes
Datatypes and codatatypes are useful for specifying and reasoning about (possibly infinite) computational processes. The Isabelle/HOL proof assistant has recently been extended with a definitional package that supports both. We describe a complete procedure for deriving nonemptiness witnesses in the general mutually recursive, nested case—nonemptiness being a proviso for introducing types in higher-order logic
- …
