422 research outputs found

    New Perspectives in Liver Transplantation: From Regeneration to Bioengineering

    Get PDF
    Advanced liver diseases have very high morbidity and mortality due to associated complications, and liver transplantation represents the only current therapeutic option. However, due to worldwide donor shortages, new alternative approaches are mandatory for such patients. Regenerative medicine could be the more appropriate answer to this need. Advances in knowledge of physiology of liver regeneration, stem cells, and 3D scaffolds for tissue engineering have accelerated the race towards efficient therapies for liver failure. In this review, we propose an update on liver regeneration, cell-based regenerative medicine and bioengineering alternatives to liver transplantation

    Cytogenetic analysis of the holocentric chromosomes of the aphid Schizaphis graminum

    Get PDF
    Chromatin organization in the holocentric chromosomes of the aphid Schizaphis graminum has been investigated at a cytological level after C-banding, NOR, Giemsa, DAPI and CMA(3) staining. C-banding technique showed the presence of numerous C bands on the two X chromosomes both in telomeric and intercalary regions, whereas autosomes show a small number of heterochromatic bands. Contrary to the results with other aphid species, in S. graminum the C-banding pattern is peculiar to each chromosome pair, thus allowing the identification of homologues and the reliable reconstruction of a karyotype. These cytogenetic data could be useful for the identification of chromosomal rearrangement eventually occurred between different S. graminum biotypes. Moreover, silver staining and fluorescent in situ hybridization (FISH) with a 28S rDNA probe localized rDNA genes on one telomere of each X chromosome; these are the only brightly fluorescent C-positive regions revealed after CMA(3) staining, whereas all other heterochromatic bands are DAPI positive

    Presence of a functional (TTAGG)n telomere-telomerase system in aphids

    Get PDF
    The structure of the telomeres of four aphid species (Acyrthosiphon pisum, Megoura viciae, Myzus persicae and Rhopalosiphum padi) has been evaluated by Southern blotting and fluorescent in situ hybridization. This revealed that each chromosomal end consists of the (TTAGG)n repeat. The presence of a telomerase coding gene has been successively verified in the A. pisum genome, revealing that aphid telomerase presents a sequence identity ranging from 12 to 18% with the invertebrate and vertebrate homologues and possesses the two main domains involved in telomerase activity. Interestingly, telomerase expression has been verified in different somatic tissues suggesting that in aphids the telomerase activity could be not restricted as in human cells. The study of telomeres in a M. persicae strain with variable chromosome number evidenced that aphid telomerase can initiate the de novo synthesis of telomere sequences at internal breakpoints resulting in the stabilization of the chromosomal fragments

    Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development

    Get PDF
    In the first part of this report we investigate whether chromatin anomalies in human spermatozoa can influence fertilization after intracytoplasmic sperm injection (ICSI). We have examined the sperm chromatin packaging quality using the chromomycin A3 (CMA3) fluorochrome and the presence of DNA damage in spermatozoa using in-situ nick translation. When comparing the spermatozoa of patients undergoing in-vitro fertilization (IVF) and ICSI distinct differences are evident in that ICSI males have a higher CMA3 fluorescence, indicating spermatozoa with loosely packed chromatin, and more spermatozoa containing endogenous DNA nicks. When examining the unfertilized oocytes of ICSI patients we found that men who had a high percentage of anomalies in their chromatin, i.e. >30% CMA3 fluorescence and >10% nicks, had more than double the number of unfertilized oocytes containing spermatozoa that had remained condensed. The observation that failed fertilized oocytes, injected with spermatozoa from patients with a higher percentage of sperm nuclear anomalies, contain more condensed spermatozoa indicates that a selection process against these spermatozoa may be in place at the time of fertilization. In the second part of the study we show that spare ICSI embryos have significantly lower rates of development to the blastocyst stage compared with those developed after routine IVF. These results show that a greater understanding of the molecular basis of male infertility is therefore needed to broaden our knowledge on the effect that abnormal spermatozoa have on fertilization and embryo developmen

    Stability domains of actin genes and genomic evolution

    Full text link
    In eukaryotic genes the protein coding sequence is split into several fragments, the exons, separated by non-coding DNA stretches, the introns. Prokaryotes do not have introns in their genome. We report the calculations of stability domains of actin genes for various organisms in the animal, plant and fungi kingdoms. Actin genes have been chosen because they have been highly conserved during evolution. In these genes all introns were removed so as to mimic ancient genes at the time of the early eukaryotic development, i.e. before introns insertion. Common stability boundaries are found in evolutionary distant organisms, which implies that these boundaries date from the early origin of eukaryotes. In general boundaries correspond with introns positions of vertebrates and other animals actins, but not much for plants and fungi. The sharpest boundary is found in a locus where fungi, algae and animals have introns in positions separated by one nucleotide only, which identifies a hot-spot for insertion. These results suggest that some introns may have been incorporated into the genomes through a thermodynamic driven mechanism, in agreement with previous observations on human genes. They also suggest a different mechanism for introns insertion in plants and animals.Comment: 9 Pages, 7 figures. Phys. Rev. E in pres

    X-linked heterochromatin distribution in the holocentric chromosomes of the green apple aphid Aphis pomi

    Get PDF
    Chromatin organization in the holocentric chromosomes of the green apple aphid Aphis pomi has been investigated at a cytological level after C-banding, NOR, Giemsa, fluorochrome staining and fluorescent in situ hybridization (FISH). C-banding technique showed that heterochromatic bands are exclusively located on X chromosomes. This data represents a peculiar feature that clearly contradicts the equilocal distribution of heterochromatin typical of monocentric chromosomes. Moreover, silver staining and FISH carried out with a 28S rDNA probe localized rDNA genes on one telomere of each X chromosome; CMA(3) staining reveals that these silver positive telomeres are, the only GC-rich regions among A. pomi heterochromatin, whereas all other C-positive bands are DAPI positive thus containing AT-rich DNA

    Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection

    Get PDF
    In this study we investigated whether morphology and chromatin anomalies in human spermatozoa can influence fertilization after intracytoplasmic sperm injection (ICSI). We examined unfertilized oocytes, using the fluorochrome Hoechst 33342, to determine whether a relationship exists between failure of fertilization and sperm chromatin quality. Sperm chromatin packaging quality was assessed using the chromomydn A3 (CMA3) fluorochrome, and the presence of DNA damage in spermatozoa, using in-situ nick translation. Normal males present sperm parameters with a normal morphology of >20%, CMA3 fluorescence of <30% and exhibit endogenous nicks in <10% of their spermatozoa. When patients were separated according to these values no difference was observed in their fertilization rates after ICSL When the unfertilized ICSI oocytes were examined, we found that patients with CMA3 fluorescence of <30% and nicks in <10% of their spermatozoa had only 17.5 and 21.6% respectively of their unfertilized oocytes containing spermatozoa that remained condensed. In contrast, patients with higher CMA3 and nick values had a significantly higher number, 412 and 48.9%, of their unfertilized oocytes containing condensed spermatozoa. Sperm morphology did not show any such pattern. The percentage of spermatozoa which had initiated decondensation in unfertilized oocytes was not influenced by morphology, CMA3 fluorescence or nicks. In light of these results we postulate that poor chromatin packaging and/or damaged DNA may contribute to failure of sperm decondensation after ICSI and result in failure of fertilizatio

    Arithmetic, working memory, and visuospatial imagery abilities in children with poor geometric learning

    Get PDF
    Many children fail in geometric learning, but factors underlying these failures have not been explored in detail. The present study addresses this issue by comparing fifth and sixth-grade children who had good or poor geometric learning, and were otherwise comparable on verbal intelligence, gender and age. Results showed that children with poor geometric learning have deficits in both arithmetic and geometric problem solving but they are more impaired in the latter. Results also showed that poor geometric learners have weaknesses in working memory, calculation, and visuospatial mental imagery. The results from logistic regressions pointed out that mental imagery skills and arithmetic problem solving ability had the highest discriminatory power in distinguishing between the two groups. Theoretical and practical implications of this research for designing interventions to help poor geometric learners are discussed. © 2018 Elsevier Inc
    corecore