28 research outputs found

    The pancreas responds to remote damage and systemic stress by secretion of the pancreatic secretory proteins PSP/regI and PAP/regIII.

    Get PDF
    In patients with infection and sepsis serum levels of Pancreatic Stone protein/regenerating protein I (PSP) are highly elevated. The origin of PSP during these conditions is presumably the pancreas, however, an intestinal origin cannot be excluded. Similarly, pancreatitis-associated protein (PAP) was identified in the pancreas. These proteins were also localized in intestinal organs. Here we aim to elucidate the bio-distribution of PSP and PAP in animal models of sepsis and in healthy humans. PSP and PAP responded to remote lesions in rats although the pancreatic response was much more pronounced than the intestinal. Tissue distribution of PSP demonstrated a 100-fold higher content in the pancreas compared to any other organ while PAP was most abundant in the small intestine. Both proteins responded to CLP or sham operation in the pancreas. PSP also increased in the intestine during CLP. The distribution of PSP and PAP in human tissue mirrored the distribution in the murine models. Distribution of PSP and PAP was visualized by immunohistochemistry. Rats and mice underwent midline laparotomies followed by mobilization of tissue and incision of the pancreatic duct or duodenum. Standard cecum-ligation-puncture (CLP) procedures or sham laparotomies were performed. Human tissue extracts were analyzed for PSP and PAP. The pancreas reacts to remote lesions and septic insults in mice and rats with increased PSP synthesis, while PAP is selectively responsive to septic events. Furthermore, our results suggest that serum PSP in septic patients is predominantly derived through an acute phase response of the pancreas

    Caerulein-induced acute pancreatitis in mice that constitutively overexpress Reg/PAP genes

    Get PDF
    BACKGROUND: The cystic fibrosis (CF) mouse pancreas has constitutively elevated expression of the Reg/PAP cell stress genes (60-fold greater Reg3α, and 10-fold greater PAP/Reg3β and Reg3γ). These genes are suggested to be involved in protection or recovery from pancreatic injury. METHODS: To test this idea the supramaximal caerulein model was used to induce acute pancreatitis in wild type and CF mice. Serum amylase, pancreatic water content (as a measure of edema), pancreatic myeloperoxidase activity, and Reg/PAP expression were quantified. RESULTS: In both wild type and CF mice caerulein induced similar elevations in serum amylase (maximal at 12 h), pancreatic edema (maximal at 7 h), and pancreatic myeloperoxidase activity (MPO, a marker of neutrophil infiltration; maximal at 7 h). By immunohistochemistry, Reg3α was strongly expressed in the untreated CF pancreas but not in wild type. During pancreatitis, Reg3α was intensely expressed in foci of inflamed tissue in both wild type and CF. CONCLUSION: These data demonstrate that the severity of caerulein-induced pancreatitis is not ameliorated in the CF mouse even though the Reg/PAP stress genes are already highly upregulated. While Reg/PAP may be protective they may also have a negative effect during pancreatitis due to their anti-apoptotic activity, which has been shown to increase the severity of pancreatitis

    Drug-induced acute pancreatitis: further criticism

    No full text
    A comprehensive literature search was performed to collect all available data on drug-induced pancreatitis. Strong evidence for an association with acute pancreatitis has been described for anticholinesterases, calcium 2',3'-dideoxyinosine, estrogen, L-asparaginase, salicylates, thiazide-diuretics, valproic acid, and vinca alkaloids. Weak evidence has been found for antituberculous agents, azathioprine, biguanides, cisplatinum, cyclosporine A, H2-blocking agents, loop diuretics, 6-mercaptopurine, metronidazole, pentamidine, steroids, sulfonamides, sulindac and tetracycline. Many cases were associated with underlying conditions known to induce acute pancreatitis themselves. It is concluded that for none of the drugs studied the available data are consistent enough to support a definite association with acute pancreatitis. Nevertheless, the data suggest that drugs may be a trigger or a cofactor in inducing pancreatitis

    Late oesophageal perforation after intraoperative transoesophageal echocardiography

    Get PDF
    Serious haemodynamic instability occurred during emergency surgery for a perforated duodenal ulcer in a 72‐year‐old man with acute myocardial infarction. Intraoperative transoesophageal echocardiography was crucial for diagnosis of the location of myocardial infarction in the right ventricle and the subsequent haemodynamic management. Postoperatively, a thrombus in the right coronary artery was removed by coronary angiography. The patient's trachea was extubated on the fourth postoperative day. Another 4 days later a leak in the lower oesophagus was suspected because of pleural empyema, and verified. The patient's trachea had to be re‐intubated and an oesophageal stent was inserted. The patient was discharged, fully recovered, 2 months after the operation. Br J Anaesth 2002: 88: 595-

    Pancreatic stone protein is highly increased during posttraumatic sepsis and activates neutrophil granulocytes

    Full text link
    OBJECTIVES: The level of pancreatic stone protein/regenerating protein (PSP/reg), a secretory protein produced in the pancreas, increases dramatically during pancreatic disease. However, after stress (e.g., anesthesia), PSP/reg levels are increased transiently in animals without pancreatic injury. Therefore, we aimed to determine whether PSP/reg is an acute-phase protein after nonpancreatic trauma. PATIENTS: Eighty-three polytraumatic patients without pancreatic damage. MEASUREMENTS AND MAIN RESULTS: We compared serum PSP/reg levels from polytraumatic patients without pancreatic damage with those in healthy controls (n = 38). C-reactive protein, interleukin-6, procalcitonin, and leukocyte numbers were also compared. The expression of CD62L and CD11b on neutrophils after exposure to PSP/reg was analyzed by flow cytometry. Thirty-three patients (39%) developed sepsis, 32 (38%) had local infections, and 18 (21%) had no infections. At admission, PSP/reg serum levels (10.2 [6.2-14.5] ng/mL; median [interquartile range]) were comparable with those in healthy controls (10.4 [7.5-12.3] ng/mL). During hospital stay, PSP/reg levels were elevated significantly in patients with sepsis (146.4 ng/mL) and in patients with infections (111.4 ng/mL) compared with patients without infections (22.8 ng/mL). Furthermore, binding of fluorescein isothiocyanate-labeled recombinant PSP/reg to human neutrophils was demonstrated. Recombinant PSP/reg elicited a dose-dependent shedding of L-selectin (CD62L) and upregulation of beta2-integrin (CD11b) in neutrophils, which indicates that PSP/reg activates neutrophils. CONCLUSIONS: We conclude that PSP/reg is up-regulated in blood after trauma, and the PSP/reg level is related to the severity of inflammation. Furthermore, PSP/reg binds to and activates neutrophils. Therefore, PSP/reg might be an acute-phase protein that could serve as a marker for posttraumatic complications

    Expression of pancreatitis-associated protein after traumatic brain injury: a mechanism potentially contributing to neuroprotection in human brain

    Full text link
    Neuronal cell death after severe traumatic brain injury (TBI) is caused by a complex interplay of pathological mechanisms including excitotoxicity, oxidative stress, mitochondrial dysfunction, extensive neuroinflammation, and ischemia-reperfusion injury. Pancreatitis-associated protein I (PAP I/reg2) was reported to be a survival factor for peripheral neurons, particularly sensory and motor neurons. In rat brains, by experimental TBI as well as by kainic acid induced brain seizure, PAP I and PAP III were found to be up-regulated in central neurons. In this study, we performed immunohistochemical staining in postmortem human brain from patients who died after severe TBI to demonstrate PAP expression on protein level in cerebellar Purkinje cells, pyramidal and granular neurons in cerebral cortex, and cortical neurons in the fore- and mid-brain. In primary cultures of rat brain cortical, hippocampal, and cerebellar neurons, we found neuroprotective effects for PAP I on H(2)O(2)-induced oxidative stress. Moreover, serum K(+)-deprivation induces apoptotic cell death in 55% of cerebellar granule neurons (CGN), whereas upon treatment with PAP I only 32% of CGN are apoptotic. Using Western blot analyses, we compared protein phosphorylation in neuronal signaling pathways activated by PAP I versus Interleukin-6 (IL-6). We found a rapid activation of Akt-kinase phosphorylation by PAP I with a peak at 15 min, whereas IL-6 induces Akt-phosphorylation lasting longer than 30 min. Phosphorylation of MAP-42/44 kinases is stimulated in a comparable fashion. Both, IL-6 and PAP I increase phosphorylation of NFκB for activation of gene transcription, whereas only IL-6 recruits STAT3 phosphorylation, indicating that STAT3 is not a target of PAP I transcription activation in brain neurons. Application of the Akt-inhibitor Wortmanin reveals only a partial inhibition of PAP I-dependent protection of CGN from H(2)O(2)-induced oxidative stress. Based on our findings, we suggest that PAP I is a long lasting neurotrophic signal for central neurons. The neuroprotective effects parallel those that have been described for effects of PAP I in ciliary neurotrophic factor (CNTF)-mediated survival of sensory and motor neurons. PAP I may act in autocrine and/or paracrine fashion and thus may contribute to endogenous protective mechanisms relevant under harmful conditions like oxidative stress, brain injury, or neurodegeneration

    Inflammation-dependent expression of SPARC during development of chronic pancreatitis in WBN/Kob rats and a microarray gene expression analysis

    No full text
    The pathophysiology of human chronic pancreatitis is not well understood and difficult to follow on a molecular basis. Therefore, we used a rat model [Wistar-Bonn/Kobori (WBN/Kob)] that exhibits spontaneous chronic inflammation and fibrosis in the pancreas. Using microarrays we compared gene expression patterns in the pancreas during development of inflammation and fibrosis of WBN/Kob rats with age-matched healthy Wistar rats. The extracellular matrix protein SPARC (secreted protein, acidic, and rich in cysteines) and other transcripts of inflammatory genes were quantified by real-time PCR, and some were localized by immunohistochemistry. When pancreatic inflammation becomes obvious at the age of 16 wk, several hundred genes are increased between 3- and 50-fold in WBN/Kob rats compared with healthy Wistar rats. Proteins produced by acinar cells and characteristic for inflammation, e.g., pancreatitis-associated protein, are highly upregulated. Other proteins, derived from infiltrating inflammatory cells and from activated stellate cells (fibrosis) such as collagens and fibronectins are also significantly upregulated. SPARC was localized to acinar cells where it increased in the vicinity of inflammatory foci. However, acinar expression of SPARC was lost during destruction of acinar cells. In human pancreatic specimens with chronic pancreatitis, SPARC exhibited a similar expression profile. During chronic inflammation and fibrosis in the WBN/Kob rat, inflammatory genes, growth factors, and structural genes exhibit a high increase of expression. A temporal profile including pre- and postinflammatory phases indicates a concurrent activation of inflammatory and fibrotic changes. Inflammation dependent expression of SPARC appears to be lost during acinar-to-duct metaplasia both in rat and human pancreas. Copyright © 2009 the American Physiological Society
    corecore