551 research outputs found
Cyanobacteria from extreme deserts to space
The development of space technology makes possible the exposure of organisms and molecules to the space environ-ment by using the ESA Biopan and Expose facilities and NASA nanosatellites; the aim is to decipher the origin, evolu-tion and distribution of life on Earth and in the Universe. The study of microbial communities thriving in lithic habitats in cold and hot deserts is gathering appreciation when dealing with the limits of life as we know it, the identification of biosignatures for searching life beyond Earth and the validation of the (litho)-Panspermia theory. Cyanobacteria of the genus Chroococcidiopsis dominate rock-dwelling communities in extreme deserts that are considered terrestrial ana-logues of Mars, like the Dry Valleys in Antarctica, the Atacama Desert in Chile or the Mojave Desert in California. The extraordinary tolerance of these cyanobacteria towards desiccation, ionizing and UV radiation makes them suitable ex-perimental strains which have been already used in astrobiological experiments and already selected for future space missions. Evidence gained so far supports the use of desert cyanobacteria to develop life support systems and in-situ resource utilization for the human space exploration and settlement on the Moon or Mars
Recommended from our members
Small RNA pathway genes identified by patterns of phylogenetic conservation and divergence
Genetic and biochemical analyses of RNA interference (RNAi) and microRNA (miRNA) pathways have revealed proteins such as Argonaute/PIWI and Dicer that process and present small RNAs to their targets. Well validated small RNA pathway cofactors, such as the Argonaute/PIWI proteins show distinctive patterns of conservation or divergence in particular animal, plant, fungal, and protist species. We compared 86 divergent eukaryotic genome sequences to discern sets of proteins that show similar phylogenetic profiles with known small RNA cofactors. A large set of additional candidate small RNA cofactors have emerged from functional genomic screens for defects in miRNA- or siRNA-mediated repression in C. elegans and D. melanogaster1,2 and from proteomic analyses of proteins co-purifying with validated small RNA pathway proteins3,4. The phylogenetic profiles of many of these candidate small RNA pathway proteins are similar to those of known small RNA cofactor proteins. We used a Bayesian approach to integrate the phylogenetic profile analysis with predictions from diverse transcriptional coregulation and proteome interaction datasets to assign a probability for each protein for a role in a small RNA pathway. Testing high-confidence candidates from this analysis for defects in RNAi silencing, we found that about half of the predicted small RNA cofactors are required for RNAi silencing. Many of the newly identified small RNA pathway proteins are orthologues of proteins implicated in RNA splicing. In support of a deep connection between the mechanism of RNA splicing and small RNA-mediated gene silencing, the presence of the Argonaute proteins and other small RNA components in the many species analysed strongly correlates with the number of introns in that species
Silver nanowire networks: Physical properties and potential integration in solar cells
peer reviewedWith the growing interest in flexible electronics and the increased utilization of Indium Tin Oxide electrodes for display and photovoltaic applications the need for new materials is emerging.
In this work we present the electro-optical properties of Ag nanowire networks as an alternative transparent conductive material. A comparison of different film deposition techniques is made and indicates that the properties of the network are independent of the fabrication method. Analysis of the electrical behavior as a function of nanowire density is made and compared with theoretical results as well as Monte Carlo simulations.
Thermal annealing is shown to reduce the sheet resistance from 1000 Ω/sq to 8 Ω/sq; this reduction is achieved by local sintering of the nanowire junctions.
Experimental optimization of Ag nanowire electrodes was undertaken and a peak in the electro-optical properties is observed at approximately 100 mg/m². Finally a discussion of the potential integration of Ag nanowire networks into solar cells is undertaken; we observe that these electrodes show promise as an emerging transparent conductive material, especially for flexible applications
Virtual Outcrops in a Pocket: The Smartphone as a Fully Equipped Photogrammetric Data Acquisition Tool
Since the advent of affordable consumer-grade cameras over a century ago, photographic images have been the standard medium for capturing and visualizing outcrop-scale geological features. Despite the ubiquity of raster image data capture in routine fieldwork, the development of close-range 3D remote-sensing techniques has led to a paradigm shift in the representation and analysis of rock exposures from two- to three-dimensional forms. The use of geological 3D surface reconstructions in routine fieldwork has, however, been limited by the portability, associated learning curve, and/or expense of tools required for data capture, visualization, and analysis. Smartphones are rapidly becoming a viable alternative to conventional 3D close-range remote-sensing data capture and visualization platforms, providing a catalyst for the general uptake of 3D outcrop technologies by the geological community, which were up until relatively recently the purview of a relatively small number of geospatial specialists. Indeed, the continuous improvement of smartphone cameras, coupled with their integration with global navigation satellite system (GNSS) and inertial sensors provides 3D reconstructions with comparable accuracy to survey-grade systems. These developments have already led many field geologists to replace reflex cameras, as well as dedicated handheld GNSS receivers and compass clinometers, with smartphones, which offer the equivalent functionality within a single compact platform. Here we demonstrate that through the use of a smartphone and a portable gimbal stabilizer, we can readily generate and register high-quality 3D scans of outcropping geological structures, with the workflow exemplified using a mirror of a seismically active fault. The scan is conducted with minimal effort over the course of a few minutes with limited equipment, thus being representative of a routine situation for a field geologist
The Calabrian Arc subduction complex in the Ionian Sea: Regional architecture, active deformation, and seismic hazard
We analyzed the structure and evolution of the external Calabrian Arc (CA) subduction complex through an integrated geophysical approach involving multichannel and single‐channel seismic data at different scales. Pre‐stack depth migrated crustal‐scale seismic profiles have been used to reconstruct the overall geometry of the subduction complex, i.e., depth of the basal detachment, geometry and structural style of different tectonic domains, and location and geometry of major faults. High‐resolution multichannel seismic (MCS) and sub‐bottom CHIRP profiles acquired in key areas during a recent cruise, as well as multibeam data, integrate deep data and constrain the fine structure of the accretionary wedge as well as the activity of individual fault strands. We identified four main morpho‐structural domains in the subduction complex: 1) the post‐Messinian accretionary wedge; 2) a slope terrace; 3) the pre‐Messinian accretionary wedge and 4) the inner plateau. Variation of structural style and seafloor morphology in these domains are related to different tectonic processes, such as frontal accretion, out‐of-sequence thrusting, underplating and complex faulting. The CA subduction complex is segmented longitudinally into two different lobes characterized by different structural style, deformation rates and basal detachment depths. They are delimited by a NW/SE deformation zone that accommodates differential movements of the Calabrian and the Peloritan portions of CA and represent a recent phase of plate re‐organization in the central Mediterranean. Although shallow thrust‐type seismicity along the CA is lacking, we identified active deformation of the shallowest sedimentary units at the wedge front and in the inner portions of the subduction complex. This implies that subduction could be active but aseismic or with a locked fault plane. On the other hand, if underthrusting of the African plate has stopped recently, active shortening may be accommodated through more distributed deformation. Our findings have consequences on seismic hazard, since we identified tectonic structures likely to have caused large earthquakes in the past and to be the source regions for future events
Feasibility as feedstock of the cyanobacterium Chroococcidiopsis sp. 029 cultivated with urine-supplemented moon and mars regolith simulants
Absence of increased genomic variants in the cyanobacterium Chroococcidiopsis exposed to Mars‐like conditions outside the space station
Despite the increasing interest in using microbial‐based technologies to support human space exploration, many unknowns remain not only on bioprocesses but also on microbial survivability and genetic stability under non‐Earth conditions. Here the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated for robustness of the repair capability of DNA lesions accumulated under Mars‐like conditions (UV radiation and atmosphere) simulated in low Earth orbit using the EXPOSE‐R2 facility installed outside the International Space Station. Genomic alterations were determined in
a space‐derivate of Chroococcidiopsis sp. CCMEE 029 obtained upon reactivation on Earth of the space‐exposed cells. Comparative analysis of whole‐genome sequences showed no increased variant numbers in the space‐derivate compared to triplicates of the reference strain maintained on the ground. This result advanced cyanobacteria‐based technologies to support human space exploration
Recommended from our members
Decoding the Real-Time Neurobiological Properties of Incremental Semantic Interpretation.
Communication through spoken language is a central human capacity, involving a wide range of complex computations that incrementally interpret each word into meaningful sentences. However, surprisingly little is known about the spatiotemporal properties of the complex neurobiological systems that support these dynamic predictive and integrative computations. Here, we focus on prediction, a core incremental processing operation guiding the interpretation of each upcoming word with respect to its preceding context. To investigate the neurobiological basis of how semantic constraints change and evolve as each word in a sentence accumulates over time, in a spoken sentence comprehension study, we analyzed the multivariate patterns of neural activity recorded by source-localized electro/magnetoencephalography (EMEG), using computational models capturing semantic constraints derived from the prior context on each upcoming word. Our results provide insights into predictive operations subserved by different regions within a bi-hemispheric system, which over time generate, refine, and evaluate constraints on each word as it is heard.ERC Horizon202
- …
