615 research outputs found

    Quasiparticles of string solutions in the spin-1/2 antiferromagnetic Heisenberg chain in a magnetic field

    Full text link
    Spectral properties of the spin-1/2 antiferromagnetic Heisenberg chain in a magnetic field are investigated by using exact Bethe-ansatz solutions. We argue that not only quasiparticles called psinon and antipsinon but also a quasiparticle representing a 2-string in the Bethe ansatz plays an important role for dynamical properties in a magnetic field. Combined with psinon and antipsinon, the quasiparticle for a 2-string forms a continuum in the high-energy regime for transverse dynamical structure factor S+−(k,ω)S^{+-}(k,\omega). In the zero-field limit, the continuum is located on the mode of the lowest excited states in zero field called the des Cloizeaux-Pearson mode. In a magnetic field, the continuum separates from other low-energy continua, and reduces to the mode of bound states of overturned spins from the fully polarized state near the saturation field. We confirm the relevance through comparisons with available experimental results on the quasi-one-dimensional antiferromagnet CuCl2⋅_2\cdot2N(C5_5D5_5).Comment: 4 pages, 1 figure, 1 tabl

    Comparison of modelled and empirical atmospheric propagation data

    Get PDF
    The radiometric integrity of TM thermal infrared channel data was evaluated and monitored to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Modelled atmospheric transmittance and path radiance were compared with empirical values derived from aircraft underflight data. Aircraft thermal infrared imagery and calibration data were available on two dates as were corresponding atmospheric radiosonde data. The radiosonde data were used as input to the LOWTRAN 5A code which was modified to output atmospheric path radiance in addition to transmittance. The aircraft data were calibrated and used to generate analogous measurements. These data indicate that there is a tendancy for the LOWTRAN model to underestimate atmospheric path radiance and transmittance as compared to empirical data. A plot of transmittance versus altitude for both LOWTRAN and empirical data is presented

    Spinon excitations in the XX chain: spectra, transition rates, observability

    Get PDF
    The exact one-to-one mapping between (spinless) Jordan-Wigner lattice fermions and (spin-1/2) spinons is established for all eigenstates of the one-dimensional s = 1=2 XX model on a lattice with an even or odd number N of lattice sites and periodic boundary conditions. Exact product formulas for the transition rates derived via Bethe ansatz are used to calculate asymptotic expressions of the 2-spinon and 4-spinon parts (for large even N) as well as of the 1-spinon and 3-spinon parts (for large odd N) of the dynamic spin structure factors. The observability of these spectral contributions is assessed for finite and infinite N.Comment: 19 pages, 10 figure

    Spectrum and transition rates of the XX chain analyzed via Bethe ansatz

    Get PDF
    As part of a study that investigates the dynamics of the s=1/2 XXZ model in the planar regime |Delta|<1, we discuss the singular nature of the Bethe ansatz equations for the case Delta=0 (XX model). We identify the general structure of the Bethe ansatz solutions for the entire XX spectrum, which include states with real and complex magnon momenta. We discuss the relation between the spinon or magnon quasiparticles (Bethe ansatz) and the lattice fermions (Jordan-Wigner representation). We present determinantal expressions for transition rates of spin fluctuation operators between Bethe wave functions and reduce them to product expressions. We apply the new formulas to two-spinon transition rates for chains with up to N=4096 sites.Comment: 11 pages, 4 figure

    The two-spinon transverse structure factor of the gapped Heisenberg antiferromagnetic chain

    Full text link
    We consider the transverse dynamical structure factor of the anisotropic Heisenberg spin-1/2 chain (XXZ model) in the gapped antiferromagnetic regime (Δ>1\Delta > 1). Specializing to the case of zero field, we use two independent approaches based on integrability (one valid for finite size, the other for the infinite lattice) to obtain the exact two-spinon part of this correlator. We discuss in particular its asymmetry with respect to the π/2\pi/2 momentum line, its overall anisotropy dependence, and its contribution to sum rules.Comment: 19 pages, 6 figure

    Extended quantum critical phase in a magnetized spin-1/2 antiferromagnetic chain

    Full text link
    Measurements are reported of the magnetic field dependence of excitations in the quantum critical state of the spin S=1/2 linear chain Heisenberg antiferromagnet copper pyrazine dinitrate (CuPzN). The complete spectrum was measured at k_B T/J <= 0.025 for H=0 and H=8.7 Tesla where the system is ~30% magnetized. At H=0, the results are in quantitative agreement with exact calculations of the dynamic spin correlation function for a two-spinon continuum. At high magnetic field, there are multiple overlapping continua with incommensurate soft modes. The boundaries of these continua confirm long-standing predictions, and the intensities are consistent with exact diagonalization and Bethe Ansatz calculations.Comment: 4 pages, 4 figure

    Two Dimensional Quantum Mechanical Modeling of Nanotransistors

    Full text link
    Quantization in the inversion layer and phase coherent transport are anticipated to have significant impact on device performance in 'ballistic' nanoscale transistors. While the role of some quantum effects have been analyzed qualitatively using simple one dimensional ballistic models, two dimensional (2D) quantum mechanical simulation is important for quantitative results. In this paper, we present a framework for 2D quantum mechanical simulation of a nanotransistor / Metal Oxide Field Effect Transistor (MOSFET). This framework consists of the non equilibrium Green's function equations solved self-consistently with Poisson's equation. Solution of this set of equations is computationally intensive. An efficient algorithm to calculate the quantum mechanical 2D electron density has been developed. The method presented is comprehensive in that treatment includes the three open boundary conditions, where the narrow channel region opens into physically broad source, drain and gate regions. Results are presented for (i) drain current versus drain and gate voltages, (ii) comparison to results from Medici, and (iii) gate tunneling current, using 2D potential profiles. Methods to reduce the gate leakage current are also discussed based on simulation results.Comment: 12 figures. Journal of Applied Physics (to appear

    Quasiparticles governing the zero-temperature dynamics of the 1D spin-1/2 Heisenberg antiferromagnet in a magnetic field

    Get PDF
    The T=0 dynamical properties of the one-dimensional (1D) s=1/2s=1/2 Heisenberg antiferromagnet in a uniform magnetic field are studied via Bethe ansatz for cyclic chains of NN sites. The ground state at magnetization 0<Mz<N/20<M_z<N/2, which can be interpreted as a state with 2Mz2M_z spinons or as a state of MzM_z magnons, is reconfigured here as the vacuum for a different species of quasiparticles, the {\em psinons} and {\em antipsinons}. We investigate three kinds of quantum fluctuations, namely the spin fluctuations parallel and perpendicular to the direction of the applied magnetic field and the dimer fluctuations. The dynamically dominant excitation spectra are found to be sets of collective excitations composed of two quasiparticles excited from the psinon vacuum in different configurations. The Bethe ansatz provides a framework for (i) the characterization of the new quasiparticles in relation to the more familiar spinons and magnons, (ii) the calculation of spectral boundaries and densities of states for each continuum, (iii) the calculation of transition rates between the ground state and the dynamically dominant collective excitations, (iv) the prediction of lineshapes for dynamic structure factors relevant for experiments performed on a variety of quasi-1D antiferromagnetic compounds, including KCuF3_3, Cu(C4_4H4_4N2)(NO3)2_2)(NO_3)_2, and CuGeO3_3.Comment: 13 pages, 12 figure

    The experience of family carers attending a joint reminiscence group with people with dementia: A thematic analysis

    Get PDF
    Reminiscence therapy has the potential to improve quality of life for people with dementia. In recent years reminiscence groups have extended to include family members, but carers' experience of attending joint sessions is undocumented. This qualitative study explored the experience of 18 family carers attending 'Remembering Yesterday Caring Today' groups. Semi-structured interviews were transcribed and subjected to thematic analysis. Five themes were identified: experiencing carer support; shared experience; expectations (met and unmet), carer perspectives of the person with dementia's experience; and learning and comparing. Family carers' experiences varied, with some experiencing the intervention as entirely positive whereas others had more mixed feelings. Negative aspects included the lack of respite from their relative, the lack of emphasis on their own needs, and experiencing additional stress and guilt through not being able to implement newly acquired skills. These findings may explain the failure of a recent trial of joint reminiscence groups to replicate previous findings of positive benefit. More targeted research within subgroups of carers is required to justify the continued use of joint reminiscence groups in dementia care
    • …
    corecore