21,932 research outputs found
Aspects of holography and rotating AdS black holes
A comparison is made between the thermodynamics of weakly and strongly
coupled Yang-Mills with fixed angular momentum. The free energy of the strongly
coupled Yang-Mills is calculated by using a dual supergravity description
corresponding to a rotating black hole in an Anti de Sitter (AdS) background.
All thermodynamic quantities are shown have the same ratio of 3/4 (independent
of angular momentum) between strong and weak coupling.Comment: 6 pages latex, Talk given at the TMR conference ``Quantum aspects of
gauge theories, supersymmetry and unification", Paris Sept. 199
Perturbation Theory for Quantum Computation with Large Number of Qubits
We describe a new and consistent perturbation theory for solid-state quantum
computation with many qubits. The errors in the implementation of simple
quantum logic operations caused by non-resonant transitions are estimated. We
verify our perturbation approach using exact numerical solution for relatively
small (L=10) number of qubits. A preferred range of parameters is found in
which the errors in processing quantum information are small. Our results are
needed for experimental testing of scalable solid-state quantum computers.Comment: 8 pages RevTex including 2 figure
Solid-State Nuclear Spin Quantum Computer Based on Magnetic Resonance Force Microscopy
We propose a nuclear spin quantum computer based on magnetic resonance force
microscopy (MRFM). It is shown that an MRFM single-electron spin measurement
provides three essential requirements for quantum computation in solids: (a)
preparation of the ground state, (b) one- and two- qubit quantum logic gates,
and (c) a measurement of the final state. The proposed quantum computer can
operate at temperatures up to 1K.Comment: 16 pages, 5 figure
Non-Resonant Effects in Implementation of Quantum Shor Algorithm
We simulate Shor's algorithm on an Ising spin quantum computer. The influence
of non-resonant effects is analyzed in detail. It is shown that our ``''-method successfully suppresses non-resonant effects even for relatively
large values of the Rabi frequency.Comment: 11 pages, 13 figure
Dynamical Stability and Quantum Chaos of Ions in a Linear Trap
The realization of a paradigm chaotic system, namely the harmonically driven
oscillator, in the quantum domain using cold trapped ions driven by lasers is
theoretically investigated. The simplest characteristics of regular and chaotic
dynamics are calculated. The possibilities of experimental realization are
discussed.Comment: 24 pages, 17 figures, submitted to Phys. Rev
Dynamical fidelity of a solid-state quantum computation
In this paper we analyze the dynamics in a spin-model of quantum computer.
Main attention is paid to the dynamical fidelity (associated with dynamical
errors) of an algorithm that allows to create an entangled state for remote
qubits. We show that in the regime of selective resonant excitations of qubits
there is no any danger of quantum chaos. Moreover, in this regime a modified
perturbation theory gives an adequate description of the dynamics of the
system. Our approach allows to explicitly describe all peculiarities of the
evolution of the system under time-dependent pulses corresponding to a quantum
protocol. Specifically, we analyze, both analytically and numerically, how the
fidelity decreases in dependence on the model parameters.Comment: 9 pages, 6 figures, submitted to PR
Dynamical Stability of an Ion in a Linear Trap as a Solid-State Problem of Electron Localization
When an ion confined in a linear ion trap interacts with a coherent laser
field, the internal degrees of freedom, related to the electron transitions,
couple to the vibrational degree of freedom of the ion. As a result of this
interaction, quantum dynamics of the vibrational degree of freedom becomes
complicated, and in some ranges of parameters even chaotic. We analyze the
vibrational ion dynamics using a formal analogy with the solid-state problem of
electron localization. In particular, we show how the resonant approximation
used in analysis of the ion dynamics, leads to a transition from a
two-dimensional (2D) to a one-dimensional problem (1D) of electron
localization. The localization length in the solid-state problem is estimated
in cases of weak and strong interaction between the cites of the 2D cell by
using the methods of resonance perturbation theory, common in analysis of 1D
time-dependent dynamical systems.Comment: 18 pages RevTe
- …
