We describe a new and consistent perturbation theory for solid-state quantum
computation with many qubits. The errors in the implementation of simple
quantum logic operations caused by non-resonant transitions are estimated. We
verify our perturbation approach using exact numerical solution for relatively
small (L=10) number of qubits. A preferred range of parameters is found in
which the errors in processing quantum information are small. Our results are
needed for experimental testing of scalable solid-state quantum computers.Comment: 8 pages RevTex including 2 figure