624 research outputs found
Recommended from our members
Effect of varying material anisotropy on critical current anisotropy in vicinal YBa2Cu3O7-delta thin films
The high cuprate superconductors are noted for their anisotropic
layered structure, certain of these materials indeed tend toward the limit of a
Lawrence-Doniach superconductor. However, YBaCuO has a
smaller anisotropy than would be expected from its interlayer spacing. This is
due to the cuprate chains in the structure. To investigate the influence of the
chain oxygen on transport properties critical current versus applied field
angle measurements were performed on fully oxygenated and de-oxygenated
YBaCuO thin films and optimally oxygenated
YCaBaCuO thin films. The films were grown
on 10 mis-cut SrTiO substrates to enable the intrinsic vortex
channelling effect to be observed. The form of the vortex channelling minimum
observed in field angle dependent critical current studies on the films was
seen to depend on film oxygenation. The vortex channelling effect is dependent
on a angular dependent cross-over to a string-pancake flux line lattice. The
results obtained appear to be consistent with the prediction of Blatter et al.
[Rev. Mod. Phys., 66 (4): 1125 (1994)] that increased superconducting
anisotropy leads to the kinked string-pancake lattice existing over a smaller
angular range.EPSR
Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species
We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons
Investigation of superconducting interactions and amorphous semiconductors
Research papers on superconducting interactions and properties and on amorphous materials are presented. The search for new superconductors with improved properties was largely concentrated on the study of properties of thin films. An experimental investigation of interaction mechanisms revealed no new superconductivity mechanism. The properties of high transition temperature, type 2 materials prepared in thin film form were studied. A pulsed field solenoid capable of providing fields in excess of 300 k0e was developed. Preliminary X-ray measurements were made of V3Si to determine the behavior of cell constant deformation versus pressure up to 98 kilobars. The electrical properties of amorphous semiconducting materials and bulk and thin film devices, and of amorphous magnetic materials were investigated for developing radiation hard, inexpensive switches and memory elements
Evaporation of a packet of quantized vorticity
A recent experiment has confirmed the existence of quantized turbulence in
superfluid He3-B and suggested that turbulence is inhomogenous and spreads away
from the region around the vibrating wire where it is created. To interpret the
experiment we study numerically the diffusion of a packet of quantized vortex
lines which is initially confined inside a small region of space. We find that
reconnections fragment the packet into a gas of small vortex loops which fly
away. We determine the time scale of the process and find that it is in order
of magnitude agreement with the experiment.Comment: figure 1a,b,c and d, figure2, figure
Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in sub-ablation conditions
An investigation of ultrashort pulsed laser induced surface modification due
to conditions that result in a superheated melted liquid layer and material
evaporation are considered. To describe the surface modification occurring
after cooling and resolidification of the melted layer and understand the
underlying physical fundamental mechanisms, a unified model is presented to
account for crater and subwavelength ripple formation based on a synergy of
electron excitation and capillary waves solidification. The proposed
theoretical framework aims to address the laser-material interaction in
sub-ablation conditions and thus minimal mass removal in combination with a
hydrodynamics-based scenario of the crater creation and ripple formation
following surface irradiation with single and multiple pulses, respectively.
The development of the periodic structures is attributed to the interference of
the incident wave with a surface plasmon wave. Details of the surface
morphology attained are elaborated as a function of the imposed conditions and
results are tested against experimental data
Optical interconnect with densely integrated plasmonic modulator and germanium photodetector arrays
We demonstrate the first chip-to-chip interconnect utilizing a densely integrated plasmonic Mach-Zehnder modulator array operating at 3 x 10 Gbit/s. A multicore fiber provides a compact optical interface, while the receiver consists of germanium photodetectors
Slow Quenches Produce Fuzzy, Transient Vortices
We examine the Zurek scenario for the production of vortices in quenches of
liquid in the light of recent experiments. Extending our previous
results to later times, we argue that short wavelength thermal fluctuations
make vortices poorly defined until after the transition has occurred. Further,
if and when vortices appear, it is plausible that that they will decay faster
than anticipated from turbulence experiments, irrespective of quench rates.Comment: 4 pages, Revtex file, no figures Apart from a more appropriate title,
this paper differs from its predecessor by including temperature, as well as
pressure, quenche
Unraveling critical dynamics: The formation and evolution of topological textures
We study the formation of topological textures in a nonequilibrium phase
transition of an overdamped classical O(3) model in 2+1 dimensions. The phase
transition is triggered through an external, time-dependent effective mass,
parameterized by quench timescale \tau. When measured near the end of the
transition the texture separation and the texture width scale respectively as
\tau^(0.39 \pm 0.02) and \tau^(0.46 \pm 0.04), significantly larger than
\tau^(0.25) predicted from the Kibble-Zurek mechanism. We show that
Kibble-Zurek scaling is recovered at very early times but that by the end of
the transition the power-laws result instead from a competition between the
length scale determined at freeze-out and the ordering dynamics of a textured
system. In the context of phase ordering these results suggest that the
multiple length scales characteristic of the late-time ordering of a textured
system derive from the critical dynamics of a single nonequilibrium correlation
length. In the context of defect formation these results imply that significant
evolution of the defect network can occur before the end of the phase
transition. Therefore a quantitative understanding of the defect network at the
end of the phase transition generally requires an understanding of both
critical dynamics and the interactions among topological defects.Comment: 12 pages, revtex, 9 figures in eps forma
- …
