547 research outputs found

    Assessment of proposed business plans of on-trip and pre-trip information in the LRT system (public urban transit) of the city of Zagreb

    Get PDF
    The quality of public urban transit organization depends to a great extent also on the organization and the quality of on-trip and pre-trip information services. The aim of this service is to provide relevant, accurate and usable traffic and transport information to current users of the public urban transit, as well as to attract new users, alleviating the burden on the roads and insuring high-quality transport service to motorists who at least on one section of their trip use public transport means. Apart from classical information forms this system greatly relies also on new telecommunication technologies including the third generation of mobile networks and mobile Internet. Apart from the wide range of methods of collecting information, their processing and dissemination, the entire problems of introducing the mentioned services into the newly organized system such as LRT needs to be systemically analyzed. It is especially important to analyze in advance and to define the relations between the private and public sector in the described process. The paper considers the corporate plans of organizing the system of on-trip and pre-trip information in the LRT system applicable in the City of Zagreb. Their implementability has been evaluated by a professional team defining the relevant factors in the selection of the corporate plan

    Dominant Role of the pi Framework in Cyclobutadiene

    Get PDF
    The extrinsic antiaromaticity of archetypal cyclobutadiene (CBD) is addressed with particular emphasis on the sigma-pi separability problem. The destabilization energy E(d)(CBD) of CBD is obtained by appropriate homodesmotic reactions involving the open chain zigzag, polyene(s). It is shown that E(d)(CBD) does not depend on the electron correlation and the zero-point vibrational energy contributions, since they are small and of the opposite sign. Consequently, they cancel in the first approximation. Further, it turns out that E(d)(CBD) can be estimated accurately enough with a very modest cc-pVDZ basis set at the Hartree-Fock (HF) level. The extrinsic antiaromatic destabilization E(ean)(CBD) of CBD is deduced after extracting the angular strain energy estimated to be 32 kcal/mol. The resulting E(ean)(CBD) value of 52 kcal/mol is in excellent agreement with the experimental thermodynamic data. If the E(ean)(CBD) is estimated relative to two isolated C=C double bonds, then it assumes 38 kcal/mol, which is roughly 10 kcal/mol per one pi electron. It is, therefore, safe to state that extrinsic antiaromaticity of CBD is larger than its angular strain. Although the sigma and pi electrons are coupled by a mutual Coulomb interaction V-ee(sigmapi), several attempts of their decoupling is made by using three partitioning schemes: stockholder, equipartition, and standard pi-electron theory recipe. The latter allocates the V-nn and V-ee(sigmapi) terms to the sigma- and pi-electron frameworks, respectively. The nuclear repulsion term V-nn is dissected into sigma and pi components in the former two partitioning schemes by using stockholder criterion. It appears that the extrinsic antiaromatic destabilization E(ean)(CBD) is determined by the pi-electron framework according to all three partitioning models

    Bugs in the System

    Get PDF
    Immunity to respiratory virus infection is governed by complex biological networks that influence disease progression and pathogenesis. Systems biology provides an opportunity to explore and understand these multifaceted interactions based on integration and modeling of multiple biological parameters. In this review, we describe new and refined systems-based approaches used to model, identify, and validate novel targets within complex networks following influenza and coronavirus infection. In addition, we propose avenues for extension and expansion that can revolutionize our understanding of infectious disease processes. Together, we hope to provide a window into the unique and expansive opportunity presented by systems biology to understand complex disease processes within the context of infectious diseases

    Immune Mechanisms Responsible for Vaccination against and Clearance of Mucosal and Lymphatic Norovirus Infection

    Get PDF
    Two cardinal manifestations of viral immunity are efficient clearance of acute infection and the capacity to vaccinate against secondary viral exposure. For noroviruses, the contributions of T cells to viral clearance and vaccination have not been elucidated. We report here that both CD4 and CD8 T cells are required for efficient clearance of primary murine norovirus (MNV) infection from the intestine and intestinal lymph nodes. Further, long-lasting protective immunity was generated by oral live virus vaccination. Systemic vaccination with the MNV capsid protein also effectively protected against mucosal challenge, while vaccination with the capsid protein of the distantly related human Lordsdale virus provided partial protection. Fully effective vaccination required a broad immune response including CD4 T cells, CD8 T cells, and B cells, but the importance of specific immune cell types varied between the intestine and intestinal lymph nodes. Perforin, but not interferon gamma, was required for clearance of MNV infection by adoptively transferred T lymphocytes from vaccinated hosts. These studies prove the feasibility of both mucosal and systemic vaccination against mucosal norovirus infection, demonstrate tissue specificity of norovirus immune cells, and indicate that efficient vaccination strategies should induce potent CD4 and CD8 T cell responses

    Altering SARS Coronavirus Frameshift Efficiency Affects Genomic and Subgenomic RNA Production

    Get PDF
    In previous studies, differences in the amount of genomic and subgenomic RNA produced by coronaviruses with mutations in the programmed ribosomal frameshift signal of ORF1a/b were observed. It was not clear if these differences were due to changes in genomic sequence, the protein sequence or the frequency of frameshifting. Here, viruses with synonymous codon changes are shown to produce different ratios of genomic and subgenomic RNA. These findings demonstrate that the protein sequence is not the primary cause of altered genomic and subgenomic RNA production. The synonymous codon changes affect both the structure of the frameshift signal and frameshifting efficiency. Small differences in frameshifting efficiency result in dramatic differences in genomic RNA production and TCID50 suggesting that the frameshifting frequency must stay above a certain threshold for optimal virus production. The data suggest that either the RNA sequence or the ratio of viral proteins resulting from different levels of frameshifting affects viral replication

    Coronavirus non-structural protein 16: Evasion, attenuation, and possible treatments

    Get PDF
    The recent emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV), nearly a decade after the Severe Acute Respiratory Syndrome (SARS) CoV, highlights the importance of understanding and developing therapeutic treatment for current and emergent CoVs. This manuscript explores the role of NSP16, a 2′O-methyl-transferase (2′O-MTase), in CoV infection and the host immune response. The review highlights conserved motifs, required interaction partners, as well as the attenuation of NSP16 mutants, and restoration of these mutants in specific immune knockouts. Importantly, the work also identifies a number of approaches to exploit this understanding for therapeutic treatment and the data clearly illustrate the importance of NSP16 2′O-MTase activity for CoV infection and pathogenesis

    A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease

    Get PDF
    Live-attenuated RNA virus vaccines are efficacious but subject to reversion to virulence. Among RNA viruses, replication fidelity is recognized as a key determinant of virulence and escape from antiviral therapy; increased fidelity is attenuating for some viruses. Coronavirus replication fidelity is approximately 20-fold greater than that of other RNA viruses and is mediated by a 3′-5′ exonuclease activity (ExoN) that likely functions in RNA proofreading. In this study, we demonstrate that engineered inactivation of SARS-CoV ExoN activity results in a stable mutator phenotype with profoundly decreased fidelity in vivo and attenuation of pathogenesis in young, aged, and immunocompromised mouse models of human SARS. The ExoN inactivation genotype and mutator phenotype are stable and do not revert to virulence, even after serial passage or long-term persistent infection in vivo. Our approach represents a strategy with potential for broad applications for the stable attenuation of coronaviruses and possibly other RNA viruses

    Jumping species—a mechanism for coronavirus persistence and survival

    Get PDF
    Zoonotic transmission of novel viruses represents a significant threat to global public health and is fueled by globalization, the loss of natural habitats, and exposure to new hosts. For coronaviruses (CoVs), broad diversity exists within bat populations and uniquely positions them to seed future emergence events. In this review, we explore the host and viral dynamics that shape these CoV populations for survival, amplification, and possible emergence in novel hosts

    Optimizing integrated steelworks process off-gas distribution through Economic Hybrid Model Predictive Control and Echo State Networks

    Get PDF
    Steel production in integrated steelworks involves the simultaneous production of various byproducts, including process off-gases that are usually exploited for generating electricity in the internal power plant, heat and steam. Their discontinuous production is managed through complex network, gasholders and torches, which must be managed with stringent operational constraints. In this paper we present a supervision and control system designed to optimize the economic management of the distribution of process off-gases that also allows minimizing the environmental impact. The system implements a digital twin based mainly on machine learning techniques, including Echo State Networks, and a hierarchical optimization system, which first level is based on an economic model predictive approach and the second level is based on the economic hybrid model predictive control. This system allows to effectively maximize the use of off-gases while minimizing the environmental impact of their use up to 97%

    Attenuation and Restoration of Severe Acute Respiratory Syndrome Coronavirus Mutant Lacking 2'-O-Methyltransferase Activity

    Get PDF
    The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and, more recently, Middle Eastern respiratory syndrome CoV (MERS-CoV) underscores the importance of understanding critical aspects of CoV infection and pathogenesis. Despite significant insights into CoV cross-species transmission, replication, and virus-host interactions, successful therapeutic options for CoVs do not yet exist. Recent identification of SARS-CoV NSP16 as a viral 2′-O-methyltransferase (2′-O-MTase) led to the possibility of utilizing this pathway to both attenuate SARS-CoV infection and develop novel therapeutic treatment options. Mutations were introduced into SARS-CoV NSP16 within the conserved KDKE motif and effectively attenuated the resulting SARS-CoV mutant viruses both in vitro and in vivo. While viruses lacking 2′-O-MTase activity had enhanced sensitivity to type I interferon (IFN), they were not completely restored in their absence in vivo. However, the absence of either MDA5 or IFIT1, IFN-responsive genes that recognize unmethylated 2′-O RNA, resulted in restored replication and virulence of the dNSP16 mutant virus. Finally, using the mutant as a live-attenuated vaccine showed significant promise for possible therapeutic development against SARS-CoV. Together, the data underscore the necessity of 2′-O-MTase activity for SARS-CoV pathogenesis and identify host immune pathways that mediate this attenuation. In addition, we describe novel treatment avenues that exploit this pathway and could potentially be used against a diverse range of viral pathogens that utilize 2′-O-MTase activity to subvert the immune system
    corecore