2,115 research outputs found
Feasibility Test of the MedaCube
Poor adherence is a significant barrier to achieve better patient outcomes. Rates of non-adherence approach 40% resulting in 10% of all emergency department visits and 23% of admissions into skilled nursing facilities. Many factors contribute to medication non-adherence including psychological and memory disorders, aging and pill burden. The MedaCube is a medication management system intended to help solve unintentional medication non-adherence. The device is designed to dispense scheduled and as-needed oral medications. The MedaCube provides audio and visual prompts alerting subjects to administer their medications. Caregivers receive notification of missed doses, late doses and refill requests. The null hypothesis is that use of the MedaCube results in no difference in medication adherence when compared with six month prior adherence in individual subjects
Magnetothermodynamics: Measuring equations of state in a relaxed magnetohydrodynamic plasma
We report the first measurements of equations of state of a fully relaxed
magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma,
called Taylor states, are formed in a coaxial magnetized plasma gun, and are
allowed to relax and drift into a closed flux conserving volume. Density, ion
temperature, and magnetic field are measured as a function of time as the
Taylor states compress and heat. The theoretically predicted MHD and double
adiabatic equations of state are compared to experimental measurements. We find
that the MHD equation of state is inconsistent with our data.Comment: 4 pages, 4 figure
Measuring The Equations Of State In A Relaxed Magnetohydrodynamic Plasma
We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data
Magnetothermodynamics: Measurements Of The Thermodynamic Properties In A Relaxed Magnetohydrodynamic Plasma
We have explored the thermodynamics of compressed magnetized plasmas in laboratory experiments and we call these studies ‘magnetothermodynamics’. The experiments are carried out in the Swarthmore Spheromak eXperiment device. In this device, a magnetized plasma source is located at one end and at the other end, a closed conducting can is installed. We generate parcels of magnetized plasma and observe their compression against the end wall of the conducting cylinder. The plasma parameters such as plasma density, temperature and magnetic field are measured during compression using HeNe laser interferometry, ion Doppler spectroscopy and a linear dot{B} probe array, respectively. To identify the instances of ion heating during compression, a PV diagram is constructed using measured density, temperature and a proxy for the volume of the magnetized plasma. Different equations of state are analysed to evaluate the adiabatic nature of the compressed plasma. A three-dimensional resistive magnetohydrodynamic code (NIMROD) is employed to simulate the twisted Taylor states and shows stagnation against the end wall of the closed conducting can. The simulation results are consistent to what we observe in our experiments
Economic Performance of 11 Cheddar Cheese Manufacturing Plants in Northeast and North Central Regions
A.E. Res. 87-
Herd Management Milk Analysis: Jersey versus Holstein and Between Lab Agreement of Results
- …
