312 research outputs found
Improving the consumer demand forecast to generate more accurate suggested orders at the store-item level
Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; in conjunction with the Leaders for Manufacturing Program at MIT, 2008.Includes bibliographical references (p. 57).One of the biggest opportunities for this consumer goods company today is reducing retail stockouts at its Direct Store Delivery (DSD) customers via pre-selling, which represents approximately 70% of the company's total sales volume. But reducing retail stock-outs is becoming constantly more challenging with an ever-burgeoning number of SKUs due to new product introductions and packaging innovations. The main tool this consumer goods company uses to combat retail stock-outs is the pre-sell handheld, which the company provides to all field sales reps. The handheld runs proprietary software developed by this consumer goods company that creates suggested orders based on a number of factors including: * Baseline forecast (specific to store-item combination) * Seasonality effects (i.e., higher demand for products during particular seasons) * Promotional effects (i.e., lift created from sale prices) * Presence of in-store displays (i.e., more space for product than just shelf space) * Weekday effects (i.e., selling more on weekends when most people shop) * Holiday effects (i.e., higher demand for products at holidays) * Inventory levels on the shelves and in the back room * In-transit orders (i.e., orders that may already be on their way to the customer) The more accurate that the suggested orders are, the fewer retail stock-outs will occur. This project seeks to increase the accuracy of the consumer demand forecast, and ultimately the suggested orders, by improving the baseline forecast and accounting for the effect of cannibalization on demand.by Susan D. Bankston.S.M.M.B.A
Collective self-esteem and attitudes toward collaboration as predictors to collaborative practice behaviors used by registered nurses and physicians in acute care hospitals
Beginning in 2000, the Institute of Medicine clearly established the importance of fostering interdisciplinary collaboration and teamwork with regard to improving patient care quality and safety in acute care hospitals. IOM documents also presented evidence of the positive impact that interdisciplinary collaboration and teamwork can have on other key dimensions of organizational performance. Interdisciplinary collaboration represents a significant issue confronting hospital and nursing executives, deans of colleges of nursing and medicine and practicing nurses and physicians. The aim of this study was to examine the extent to which collective self-esteem and attitudes toward collaboration were predictors to nurse-to-nurse, nurse-to-physician and physician to nurse collaborative practice behaviors in acute care hospitals. The conceptual framework used to guide the study was derived from social identity theory, symbolic interaction theory, and relevant published research on nurse physician collaboration in contemporary acute care hospitals
Pipeline programming: Addressing the recruitment, retention, and success of underrepresented students
Through this educational activity, the learner will be able to evaluate implementation strategies for comprehensive educational pipeline programming targeting rural underrepresented nursing students, and evaluate existing pipeline programming in increasing recruitment, retention and success of underrepresented students
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer.
Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly because of dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach, we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure, and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling, resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals new drug combinations that may unlock the full potential of PI3K-AKT-mTOR pathway inhibitors in breast cancer
Primary stabilization of humeral shaft fractures: an experimental study of different osteosynthesis methods
OBJETIVO: Estudo experimental idealizado com o objetivo de se avaliar a estabilização primária das fraturas da diáfise umeral com três diferentes métodos de osteossíntese, representados por uma placa tipo DCP aplicada com técnica em ponte, uma síntese incomum, denominada SPS®, ainda sem similar na literatura, aplicada pela técnica em ponte, e um terceiro método constituído de uma haste intramedular com um método de bloqueio também incomum proporcionado por um parafuso cortical distalmente e por um fio do tipo Ender proximalmente. MATERIAL E MÉTODO: Vinte e um pares de úmeros humanos foram divididos em três grupos, utilizando-se um tipo de material para cada grupo, os quais foram submetidos a osteotomias, aos procedimentos de fixação e a ensaios não destrutivos de flexo-compressão e de torção, com limites de carga de 200N e de 100N, respectivamente e, num mecanismo de "crossing", foram submetidos secundariamente a novos ensaios de torção e de flexo-compressão, amparados por análise estatística. RESULTADOS: O grupo da placa DCP em ponte mostrou boa resistência às cargas aplicadas, o que também ocorreu no grupo do SPS®, que apesar de mostrar maiores índices de deflexão, apresentou grande capacidade elástica. O grupo da haste intramedular mostrou bons resultados nos ensaios de flexo-compressão, devido ao seu mecanismo de tutor, mas não demonstrou resistência às cargas de torção.OBJECTIVE: The purpose of this study was to assess primary stabilization of humeral shaft fractures using three different methods of fixation, represented by a DCP type plate, applied as a bridge plate, an uncommon synthesis material named SPS®, not previously described in literature and also used as a bridge plate, and a third type of material constituted by an intramedullary nail, with an uncommon locking provided by a distal cortical screw and a proximal Ender-type wire. MATERIAL AND METHOD: Twenty-one pairs of human humeri were divided into three groups, each using one type of material for fixation, the bones of which were osteotomized, stabilized and submitted to nondestructive flexion-compression and torsion assays up to 200 N and 100 N respectively, and, in a crossing mechanism, the groups were again submitted to other torsion and flexion-compression assays, supported by statistical analysis. RESULTS: The bridge-DCP group showed good resistance to the applied forces, similarly to the SPS® group, which, although presenting greater deflection, showed great elastic capacity. The intramedullary nail group showed good results in the flexion-compression assay due to the tutor mechanism of the intramedullary nails, but did not show resistance to the torsion forces
Leadership 2.0: Summer bridge programming to address the recruitment, retention, and success of underrepresented students
Through this educational activity, the learner will be able to evaluate implementation strategies for summer bridge residential programming targeting underrepresented nursing students, summarize its impact on the recruitment, retention and academic success of this student population, and assess holistic elements that are associated with successful summer bridge programming
A Small Angle Scattering Sensor System for the Characterization of Combustion Generated Particulate
One of the critical issues for the US space program is fire safety of the space station and future launch vehicles. A detailed understanding of the scattering signatures of particulate is essential for the development of a false alarm free fire detection system. This paper describes advanced optical instrumentation developed and applied for fire detection. The system is being designed to determine four important physical properties of disperse fractal aggregates and particulates including size distribution, number density, refractive indices, and fractal dimension. Combustion generated particulate are the primary detection target; however, in order to discriminate from other particulate, non-combustion generated particles should also be characterized. The angular scattering signature is measured and analyzed using two photon optical laser scattering. The Rayleigh-Debye-Gans (R-D-G) scattering theory for disperse fractal aggregates is utilized. The system consists of a pulsed laser module, detection module and data acquisition system and software to analyze the signals. The theory and applications are described
- …
