1,004 research outputs found

    Nonequilibrium stochastic processes: Time dependence of entropy flux and entropy production

    Full text link
    Based on the Fokker-Planck and the entropy balance equations we have studied the relaxation of a dissipative dynamical system driven by external Ornstein-Uhlenbeck noise processes in absence and presence of nonequilibrium constraint in terms of the thermodynamically inspired quantities like entropy flux and entropy production. The interplay of nonequilibrium constraint, dissipation and noise reveals some interesting extremal nature in the time dependence of entropy flux and entropy production.Comment: RevTex, 17 pages, 9 figures. To appear in Phys. Rev.

    The noise properties of stochastic processes and entropy production

    Get PDF
    Based on a Fokker-Planck description of external Ornstein-Uhlenbeck noise and cross-correlated noise processes driving a dynamical system we examine the interplay of the properties of noise processes and the dissipative characteristic of the dynamical system in the steady state entropy production and flux. Our analysis is illustrated with appropriate examples.Comment: RevTex, 1 figure, To appear in Phys. Rev.

    Periodic force induced stabilization or destabilization of the denatured state of a protein

    Full text link
    We have studied the effects of an external sinusoidal force in protein folding kinetics. The externally applied force field acts on the each amino acid residues of polypeptide chains. Our simulation results show that mean protein folding time first increases with driving frequency and then decreases passing through a maximum. With further increase of the driving frequency the mean folding time starts increasing as the noise-induced hoping event (from the denatured state to the native state) begins to experience many oscillations over the mean barrier crossing time period. Thus unlike one-dimensional barrier crossing problems, the external oscillating force field induces both \emph{stabilization or destabilization of the denatured state} of a protein. We have also studied the parametric dependence of the folding dynamics on temperature, viscosity, non-Markovian character of bath in presence of the external field

    A semiclassical theory of quantum noise in open chaotic systems

    Get PDF
    We consider the quantum evolution of classically chaotic systems in contact with surroundings. Based on \hbar-scaling of an equation for time evolution of the Wigner's quasi-probability distribution function in presence of dissipation and thermal diffusion we derive a semiclassical equation for quantum fluctuations. This identifies an early regime of evolution dominated by fluctuations in the curvature of the potential due to classical chaos and dissipation. A stochastic treatment of this classical fluctuations leads us to a Fokker-Planck equation which is reminiscent of Kramers' equation for thermally activated processes. This reveals an interplay of three aspects of evolution of quantum noise in weakly dissipative open systems; the reversible Liouville flow, the irreversible chaotic diffusion which is characteristic of the system itself, and irreversible dissipation induced by the external reservoir. It has been demonstrated that in the dissipation-free case a competition between Liouville flow in the contracting direction of phase space and chaotic diffusion sets a critical width in the Wigner function for quantum fluctuations. We also show how the initial quantum noise gets amplified by classical chaos and ultimately equilibrated under the influence of dissipation. We establish that there exists a critical limit to the expansion of phase space. The limit is determined by chaotic diffusion and dissipation. Making use of appropriate quantum-classical correspondence we verify the semiclassical analysis by the fully quantum simulation in a chaotic quartic oscillator.Comment: Plain Latex, 27 pages, 6 ps figure, To appear in Physica

    Interference of stochastic resonances: Splitting of Kramers' rate

    Full text link
    We consider the escape of particles located in the middle well of a symmetric triple well potential driven sinusoidally by two forces such that the potential wells roll as in stochastic resonance and the height of the potential barrier oscillates symmetrically about a mean as in resonant activation. It has been shown that depending on their phase difference the application of these two synchronized signals may lead to a splitting of time averaged Kramers' escape rate and a preferential product distribution in a parallel chemical reaction in the steady state

    Fluctuation-dissipation relationship in chaotic dynamics

    Full text link
    We consider a general N-degree-of-freedom dissipative system which admits of chaotic behaviour. Based on a Fokker-Planck description associated with the dynamics we establish that the drift and the diffusion coefficients can be related through a set of stochastic parameters which characterize the steady state of the dynamical system in a way similar to fluctuation-dissipation relation in non-equilibrium statistical mechanics. The proposed relationship is verified by numerical experiments on a driven double well system.Comment: Revtex, 23 pages, 2 figure

    Generalized quantum Fokker-Planck, diffusion and Smoluchowski equations with true probability distribution functions

    Get PDF
    Traditionally, the quantum Brownian motion is described by Fokker-Planck or diffusion equations in terms of quasi-probability distribution functions, e.g., Wigner functions. These often become singular or negative in the full quantum regime. In this paper a simple approach to non-Markovian theory of quantum Brownian motion using {\it true probability distribution functions} is presented. Based on an initial coherent state representation of the bath oscillators and an equilibrium canonical distribution of the quantum mechanical mean values of their co-ordinates and momenta we derive a generalized quantum Langevin equation in cc-numbers and show that the latter is amenable to a theoretical analysis in terms of the classical theory of non-Markovian dynamics. The corresponding Fokker-Planck, diffusion and the Smoluchowski equations are the {\it exact} quantum analogues of their classical counterparts. The present work is {\it independent} of path integral techniques. The theory as developed here is a natural extension of its classical version and is valid for arbitrary temperature and friction (Smoluchowski equation being considered in the overdamped limit).Comment: RevTex, 16 pages, 7 figures, To appear in Physical Review E (minor revision

    Sperm DNA integrity in relation to exposure to environmental perfluoroalkyl substances – A study of spouses of pregnant women in three geographical regions.

    Get PDF
    Perfluoroalkyl substances (PFASs) can interfere with male reproductive function, but evidence in humansis limited. Six hundred four fertilemen(199 from Greenland, 197 from Poland and 208 from Ukraine) wereenrolled in the study. We measured four PFASs in serum (PFOS, PFOA, PFNA and PFHxS) and concurrentDNA damage in spermatozoa by sperm chromatin structure assay (SCSA) and in situ terminal deoxynucleotidyltransferase dUTP nick-end labeling (TUNEL) assay, apoptotic markers in semen (Fas-receptorand Bcl-xL), and reproductive hormones in serum. No association between PFASs and SCSA, apoptoticmarkers or reproductive hormones emerged.Weobserved a slight increase in SHBG and TUNEL-positivitywith increased PFOA exposure in men from Greenland. Thus, consistent evidence that PFAS exposureinterferes with sperm DNA fragmentation, apoptosis or reproductive hormones was not found

    Kinetics of self-induced aggregation of Brownian particles: non-Markovian and non-Gaussian features

    Full text link
    In this paper we have studied a model for self-induced aggregation in Brownian particle incorporating the non-Markovian and non-Gaussian character of the associated random noise process. In this model the time evolution of each individual is guided by an over-damped Langevin equation of motion with a non-local drift resulting from the local unbalance distributions of the other individuals. Our simulation result shows that colored nose can induce the cluster formation even at large noise strength. Another observation is that critical noise strength grows very rapidly with increase of noise correlation time for Gaussian noise than non Gaussian one. However, at long time limit the cluster number in aggregation process decreases with time following a power law. The exponent in the power law increases remarkable for switching from Markovian to non Markovian noise process
    corecore