11,517 research outputs found

    Critical point for the strong field magnetoresistance of a normal conductor/perfect insulator/perfect conductor composite with a random columnar microstructure

    Full text link
    A recently developed self-consistent effective medium approximation, for composites with a columnar microstructure, is applied to such a three-constituent mixture of isotropic normal conductor, perfect insulator, and perfect conductor, where a strong magnetic field {\bf B} is present in the plane perpendicular to the columnar axis. When the insulating and perfectly conducting constituents do not percolate in that plane, the microstructure-induced in-plane magnetoresistance is found to saturate for large {\bf B}, if the volume fraction of the perfect conductor pSp_S is greater than that of the perfect insulator pIp_I. By contrast, if pS<pIp_S<p_I, that magnetoresistance keeps increasing as B2{\bf B}^2 without ever saturating. This abrupt change in the macroscopic response, which occurs when pS=pIp_S=p_I, is a critical point, with the associated critical exponents and scaling behavior that are characteristic of such points. The physical reasons for the singular behavior of the macroscopic response are discussed. A new type of percolation process is apparently involved in this phenomenon.Comment: 4 pages, 1 figur

    Negative Magnetoresistance Produced by Hall Fluctuations in a Ferromagnetic Domain Structure

    Full text link
    We present a model for a negative magnetoresistance (MR) that would develop in a material with many ferromagnetic domains even if the individual domains have no magnetoresistance and even if there is no boundary resistance. The negative MR is due to a classical current-distortion effect arising from spatial variations in the Hall conductivity, combined with a change in domain structure due to an applied magnetic field. The negative MR can exceed 1000% if the product of the carrier relaxation time and the internal magnetic field due to spontaneous magnetization is sufficiently large.Comment: 3 pages, submitted to Appl. Phys. Let

    Effective Hamiltonians for some highly frustrated magnets

    Full text link
    In prior work, the authors developed a method of degenerate perturbation theory about the Ising limit to derive an effective Hamiltonian describing quantum fluctuations in a half-polarized magnetization plateau on the pyrochlore lattice. Here, we extend this formulation to an arbitrary lattice of corner sharing simplexes of qq sites, at a fraction (q2k)/q(q-2k)/q of the saturation magnetization, with 0<k<q0<k<q. We present explicit effective Hamiltonians for the examples of the checkerboard, kagome, and pyrochlore lattices. The consequent ground states in these cases for k=1k=1 are also discussed.Comment: 10 pages, 2 figures,. Conference proceedings for Highly Frustrated Magnetism 200

    Magnetoresistance of Three-Constituent Composites: Percolation Near a Critical Line

    Full text link
    Scaling theory, duality symmetry, and numerical simulations of a random network model are used to study the magnetoresistance of a metal/insulator/perfect conductor composite with a disordered columnar microstructure. The phase diagram is found to have a critical line which separates regions of saturating and non-saturating magnetoresistance. The percolation problem which describes this line is a generalization of anisotropic percolation. We locate the percolation threshold and determine the t = s = 1.30 +- 0.02, nu = 4/3 +- 0.02, which are the same as in two-constituent 2D isotropic percolation. We also determine the exponents which characterize the critical dependence on magnetic field, and confirm numerically that nu is independent of anisotropy. We propose and test a complete scaling description of the magnetoresistance in the vicinity of the critical line.Comment: Substantially revised version; description of behavior in finite magnetic fields added. 7 pages, 7 figures, submitted to PR

    Bulk metals with helical surface states

    Get PDF
    In the flurry of experiments looking for topological insulator materials, it has been recently discovered that some bulk metals very close to topological insulator electronic states, support the same topological surface states that are the defining characteristic of the topological insulator. First observed in spin-polarized ARPES in Sb (D. Hsieh et al. Science 323, 919 (2009)), the helical surface states in the metallic systems appear to be robust to at least mild disorder. We present here a theoretical investigation of the nature of these "helical metals" - bulk metals with helical surface states. We explore how the surface and bulk states can mix, in both clean and disordered systems. Using the Fano model, we discover that in a clean system, the helical surface states are \emph{not} simply absorbed by hybridization with a non-topological parasitic metallic band. Instead, they are pushed away from overlapping in momentum and energy with the bulk states, leaving behind a finite-lifetime surface resonance in the bulk energy band. Furthermore, the hybridization may lead in some cases to multiplied surface state bands, in all cases retaining the helical characteristic. Weak disorder leads to very similar effects - surface states are pushed away from the energy bandwidth of the bulk, leaving behind a finite-lifetime surface resonance in place of the original surface states

    Comment on "Optical Response of Strongly Coupled Nanopraticles in Dimer Arrays" (Phys. Rev. B 71(4), 045404, 2005)

    Full text link
    I have re-calculated the extinction spectra of aggregates of two silver nanospheres shown in Figs.~2 and 3 of Ref.~8. I have used the approximate method of images according to Ref.~8 and an exact numerical technique. I have found that the three sets of data (those I have obtained by the method of images, the numerical results, and the results published in Ref.~8) do not coincide. In this Comment, I discuss the reasons for these discrepancies and the general applicability of the method of images to the quasi-static electromagnetic problem of two interacting nanospheres.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    New Method to Calculate Electrical Forces Acting on a Sphere in an Electrorheological Fluid

    Get PDF
    We describe a method to calculate the electrical force acting on a sphere in a suspension of dielectric spheres in a host with a different dielectric constant, under the assumption that a spatially uniform electric field is applied. The method uses a spectral representation for the total electrostatic energy of the composite. The force is expressed as a certain gradient of this energy, which can be expressed in a closed analytic form rather than evaluated as a numerical derivative. The method is applicable even when both the spheres and the host have frequency-dependent dielectric functions and nonzero conductivities, provided the system is in the quasistatic regime. In principle, it includes all multipolar contributions to the force, and it can be used to calculate multi-body as well as pairwise forces. We also present several numerical examples, including host fluids with finite conductivities. The force between spheres approaches the dipole-dipole limit, as expected, at large separations, but departs drastically from that limit when the spheres are nearly in contact. The force may also change sign as a function of frequency when the host is a slightly conducting fluid.Comment: 29 pages, 8 figures, Accepted for Publication in Physical Review
    corecore