7,448 research outputs found

    From internet architecture research to standards

    Get PDF
    Many Internet architectural research initiatives have been undertaken over last twenty years. None of them actually reached their intended goal: the evolution of the Internet architecture is still driven by its protocols not by genuine architectural evolutions. As this approach becomes the main limiting factor of Internet growth and application deployment, this paper proposes an alternative research path starting from the root causes (the progressive depletion of the design principles of the Internet) and motivates the need for a common architectural foundation. For this purpose, it proposes a practical methodology to incubate architectural research results as part of the standardization process

    The Computational Complexity of the Game of Set and its Theoretical Applications

    Full text link
    The game of SET is a popular card game in which the objective is to form Sets using cards from a special deck. In this paper we study single- and multi-round variations of this game from the computational complexity point of view and establish interesting connections with other classical computational problems. Specifically, we first show that a natural generalization of the problem of finding a single Set, parameterized by the size of the sought Set is W-hard; our reduction applies also to a natural parameterization of Perfect Multi-Dimensional Matching, a result which may be of independent interest. Second, we observe that a version of the game where one seeks to find the largest possible number of disjoint Sets from a given set of cards is a special case of 3-Set Packing; we establish that this restriction remains NP-complete. Similarly, the version where one seeks to find the smallest number of disjoint Sets that overlap all possible Sets is shown to be NP-complete, through a close connection to the Independent Edge Dominating Set problem. Finally, we study a 2-player version of the game, for which we show a close connection to Arc Kayles, as well as fixed-parameter tractability when parameterized by the number of rounds played

    Exactly solvable models of adaptive networks

    Full text link
    A satisfiability (SAT-UNSAT) transition takes place for many optimization problems when the number of constraints, graphically represented by links between variables nodes, is brought above some threshold. If the network of constraints is allowed to adapt by redistributing its links, the SAT-UNSAT transition may be delayed and preceded by an intermediate phase where the structure self-organizes to satisfy the constraints. We present an analytic approach, based on the recently introduced cavity method for large deviations, which exactly describes the two phase transitions delimiting this adaptive intermediate phase. We give explicit results for random bond models subject to the connectivity or rigidity percolation transitions, and compare them with numerical simulations.Comment: 4 pages, 4 figure

    Anatomy of bubbling solutions

    Full text link
    We present a comprehensive analysis of holography for the bubbling solutions of Lin-Lunin-Maldacena. These solutions are uniquely determined by a coloring of a 2-plane, which was argued to correspond to the phase space of free fermions. We show that in general this phase space distribution does not determine fully the 1/2 BPS state of N=4 SYM that the gravitational solution is dual to, but it does determine it enough so that vevs of all single trace 1/2 BPS operators in that state are uniquely determined to leading order in the large N limit. These are precisely the vevs encoded in the asymptotics of the LLM solutions. We extract these vevs for operators up to dimension 4 using holographic renormalization and KK holography and show exact agreement with the field theory expressions.Comment: 67 pages, 6 figures; v2: typos corrected, refs added; v3: expanded explanations, more typos correcte

    Phase coexistence and finite-size scaling in random combinatorial problems

    Full text link
    We study an exactly solvable version of the famous random Boolean satisfiability problem, the so called random XOR-SAT problem. Rare events are shown to affect the combinatorial ``phase diagram'' leading to a coexistence of solvable and unsolvable instances of the combinatorial problem in a certain region of the parameters characterizing the model. Such instances differ by a non-extensive quantity in the ground state energy of the associated diluted spin-glass model. We also show that the critical exponent ν\nu, controlling the size of the critical window where the probability of having solutions vanishes, depends on the model parameters, shedding light on the link between random hyper-graph topology and universality classes. In the case of random satisfiability, a similar behavior was conjectured to be connected to the onset of computational intractability.Comment: 10 pages, 5 figures, to appear in J. Phys. A. v2: link to the XOR-SAT probelm adde

    Gauge fields, ripples and wrinkles in graphene layers

    Full text link
    We analyze elastic deformations of graphene sheets which lead to effective gauge fields acting on the charge carriers. Corrugations in the substrate induce stresses, which, in turn, can give rise to mechanical instabilities and the formation of wrinkles. Similar effects may take place in suspended graphene samples under tension.Comment: contribution to the special issue of Solid State Communications on graphen

    Landscape of solutions in constraint satisfaction problems

    Get PDF
    We present a theoretical framework for characterizing the geometrical properties of the space of solutions in constraint satisfaction problems, together with practical algorithms for studying this structure on particular instances. We apply our method to the coloring problem, for which we obtain the total number of solutions and analyze in detail the distribution of distances between solutions.Comment: 4 pages, 4 figures. Replaced with published versio

    Percolation of satisfiability in finite dimensions

    Get PDF
    The satisfiability and optimization of finite-dimensional Boolean formulas are studied using percolation theory, rare region arguments, and boundary effects. In contrast with mean-field results, there is no satisfiability transition, though there is a logical connectivity transition. In part of the disconnected phase, rare regions lead to a divergent running time for optimization algorithms. The thermodynamic ground state for the NP-hard two-dimensional maximum-satisfiability problem is typically unique. These results have implications for the computational study of disordered materials.Comment: 4 pages, 4 fig

    Parameterized Approximation Schemes using Graph Widths

    Full text link
    Combining the techniques of approximation algorithms and parameterized complexity has long been considered a promising research area, but relatively few results are currently known. In this paper we study the parameterized approximability of a number of problems which are known to be hard to solve exactly when parameterized by treewidth or clique-width. Our main contribution is to present a natural randomized rounding technique that extends well-known ideas and can be used for both of these widths. Applying this very generic technique we obtain approximation schemes for a number of problems, evading both polynomial-time inapproximability and parameterized intractability bounds
    corecore