7,448 research outputs found
From internet architecture research to standards
Many Internet architectural research initiatives have been undertaken over last twenty years. None of them actually reached their intended goal: the evolution of the Internet architecture is still driven by its protocols not by genuine architectural evolutions. As this approach becomes the main limiting factor of Internet growth and application deployment, this paper proposes an alternative research path starting from the root causes (the progressive depletion of the design principles of the Internet) and motivates the need for a common architectural foundation. For this purpose, it proposes a practical methodology to incubate architectural research results as part of the standardization process
The Computational Complexity of the Game of Set and its Theoretical Applications
The game of SET is a popular card game in which the objective is to form Sets
using cards from a special deck. In this paper we study single- and multi-round
variations of this game from the computational complexity point of view and
establish interesting connections with other classical computational problems.
Specifically, we first show that a natural generalization of the problem of
finding a single Set, parameterized by the size of the sought Set is W-hard;
our reduction applies also to a natural parameterization of Perfect
Multi-Dimensional Matching, a result which may be of independent interest.
Second, we observe that a version of the game where one seeks to find the
largest possible number of disjoint Sets from a given set of cards is a special
case of 3-Set Packing; we establish that this restriction remains NP-complete.
Similarly, the version where one seeks to find the smallest number of disjoint
Sets that overlap all possible Sets is shown to be NP-complete, through a close
connection to the Independent Edge Dominating Set problem. Finally, we study a
2-player version of the game, for which we show a close connection to Arc
Kayles, as well as fixed-parameter tractability when parameterized by the
number of rounds played
Exactly solvable models of adaptive networks
A satisfiability (SAT-UNSAT) transition takes place for many optimization
problems when the number of constraints, graphically represented by links
between variables nodes, is brought above some threshold. If the network of
constraints is allowed to adapt by redistributing its links, the SAT-UNSAT
transition may be delayed and preceded by an intermediate phase where the
structure self-organizes to satisfy the constraints. We present an analytic
approach, based on the recently introduced cavity method for large deviations,
which exactly describes the two phase transitions delimiting this adaptive
intermediate phase. We give explicit results for random bond models subject to
the connectivity or rigidity percolation transitions, and compare them with
numerical simulations.Comment: 4 pages, 4 figure
Anatomy of bubbling solutions
We present a comprehensive analysis of holography for the bubbling solutions
of Lin-Lunin-Maldacena. These solutions are uniquely determined by a coloring
of a 2-plane, which was argued to correspond to the phase space of free
fermions. We show that in general this phase space distribution does not
determine fully the 1/2 BPS state of N=4 SYM that the gravitational solution is
dual to, but it does determine it enough so that vevs of all single trace 1/2
BPS operators in that state are uniquely determined to leading order in the
large N limit. These are precisely the vevs encoded in the asymptotics of the
LLM solutions. We extract these vevs for operators up to dimension 4 using
holographic renormalization and KK holography and show exact agreement with the
field theory expressions.Comment: 67 pages, 6 figures; v2: typos corrected, refs added; v3: expanded
explanations, more typos correcte
Phase coexistence and finite-size scaling in random combinatorial problems
We study an exactly solvable version of the famous random Boolean
satisfiability problem, the so called random XOR-SAT problem. Rare events are
shown to affect the combinatorial ``phase diagram'' leading to a coexistence of
solvable and unsolvable instances of the combinatorial problem in a certain
region of the parameters characterizing the model. Such instances differ by a
non-extensive quantity in the ground state energy of the associated diluted
spin-glass model. We also show that the critical exponent , controlling
the size of the critical window where the probability of having solutions
vanishes, depends on the model parameters, shedding light on the link between
random hyper-graph topology and universality classes. In the case of random
satisfiability, a similar behavior was conjectured to be connected to the onset
of computational intractability.Comment: 10 pages, 5 figures, to appear in J. Phys. A. v2: link to the XOR-SAT
probelm adde
Gauge fields, ripples and wrinkles in graphene layers
We analyze elastic deformations of graphene sheets which lead to effective
gauge fields acting on the charge carriers. Corrugations in the substrate
induce stresses, which, in turn, can give rise to mechanical instabilities and
the formation of wrinkles. Similar effects may take place in suspended graphene
samples under tension.Comment: contribution to the special issue of Solid State Communications on
graphen
Landscape of solutions in constraint satisfaction problems
We present a theoretical framework for characterizing the geometrical
properties of the space of solutions in constraint satisfaction problems,
together with practical algorithms for studying this structure on particular
instances. We apply our method to the coloring problem, for which we obtain the
total number of solutions and analyze in detail the distribution of distances
between solutions.Comment: 4 pages, 4 figures. Replaced with published versio
Percolation of satisfiability in finite dimensions
The satisfiability and optimization of finite-dimensional Boolean formulas
are studied using percolation theory, rare region arguments, and boundary
effects. In contrast with mean-field results, there is no satisfiability
transition, though there is a logical connectivity transition. In part of the
disconnected phase, rare regions lead to a divergent running time for
optimization algorithms. The thermodynamic ground state for the NP-hard
two-dimensional maximum-satisfiability problem is typically unique. These
results have implications for the computational study of disordered materials.Comment: 4 pages, 4 fig
Parameterized Approximation Schemes using Graph Widths
Combining the techniques of approximation algorithms and parameterized
complexity has long been considered a promising research area, but relatively
few results are currently known. In this paper we study the parameterized
approximability of a number of problems which are known to be hard to solve
exactly when parameterized by treewidth or clique-width. Our main contribution
is to present a natural randomized rounding technique that extends well-known
ideas and can be used for both of these widths. Applying this very generic
technique we obtain approximation schemes for a number of problems, evading
both polynomial-time inapproximability and parameterized intractability bounds
- …
