1,109 research outputs found
High-Q-factor Al [subscript 2]O[subscript 3] micro-trench cavities integrated with silicon nitride waveguides on silicon
We report on the design and performance of high-Q integrated optical micro-trench cavities on silicon. The microcavities are co-integrated with silicon nitride bus waveguides and fabricated using wafer-scale silicon-photonics-compatible processing steps. The amorphous aluminum oxide resonator material is deposited via sputtering in a single straightforward post-processing step. We examine the theoretical and experimental optical properties of the aluminum oxide micro-trench cavities for different bend radii, film thicknesses and near-infrared wavelengths and demonstrate experimental Q factors of > 10[superscript 6]. We propose that this high-Q micro-trench cavity design can be applied to incorporate a wide variety of novel microcavity materials, including rare-earth-doped films for microlasers, into wafer-scale silicon photonics platforms
Evolution of the interfacial structure of LaAlO3 on SrTiO3
The evolution of the atomic structure of LaAlO3 grown on SrTiO3 was
investigated using surface x-ray diffraction in conjunction with
model-independent, phase-retrieval algorithms between two and five monolayers
film thickness. A depolarizing buckling is observed between cation and oxygen
positions in response to the electric field of polar LaAlO3, which decreases
with increasing film thickness. We explain this in terms of competition between
elastic strain energy, electrostatic energy, and electronic reconstructions.
The findings are qualitatively reproduced by density-functional theory
calculations. Significant cationic intermixing across the interface extends
approximately three monolayers for all film thicknesses. The interfaces of
films thinner than four monolayers therefore extend to the surface, which might
affect conductivity
What lies beneath? The role of informal and hidden networks in the management of crises
Crisis management research traditionally focuses on the role of formal communication networks in the escalation and management of organisational crises. Here, we consider instead informal and unobservable networks. The paper explores how hidden informal exchanges can impact upon organisational decision-making and performance, particularly around inter-agency working, as knowledge distributed across organisations and shared between organisations is often shared through informal means and not captured effectively through the formal decision-making processes. Early warnings and weak signals about potential risks and crises are therefore often missed. We consider the implications of these dynamics in terms of crisis avoidance and crisis management
The beginnings of geography teaching and research in the University of Glasgow: the impact of J.W. Gregory
J.W. Gregory arrived in Glasgow from Melbourne in 1904 to take up the post of foundation Professor of Geology in the University of Glasgow. Soon after his arrival in Glasgow he began to push for the setting up of teaching in Geography in Glasgow, which came to pass in 1909 with the appointment of a Lecturer in Geography. This lecturer was based in the Department of Geology in the University's East Quad. Gregory's active promotion of Geography in the University was matched by his extensive writing in the area, in textbooks, journal articles and popular books. His prodigious output across a wide range of subject areas is variably accepted today, with much of his geomorphological work being judged as misguided to varying degrees. His 'social science' publications - in the areas of race, migration, colonisation and economic development of Africa and Australia - espouse a viewpoint that is unacceptable in the twenty-first century. Nonetheless, that viewpoint sits squarely within the social and economic traditions of Gregory's era, and he was clearly a key 'Establishment' figure in natural and social sciences research in the first half of the twentieth century. The establishment of Geography in the University of Glasgow remains enduring testimony of J.W. Gregory's energy, dedication and foresight
The Green Bank Northern Celestial Cap Pulsar Survey II: The Discovery and Timing of Ten Pulsars
We present timing solutions for ten pulsars discovered in 350 MHz searches
with the Green Bank Telescope. Nine of these were discovered in the Green Bank
Northern Celestial Cap survey and one was discovered by students in the Pulsar
Search Collaboratory program in analysis of drift-scan data. Following
discovery and confirmation with the Green Bank Telescope, timing has yielded
phase-connected solutions with high precision measurements of rotational and
astrometric parameters. Eight of the pulsars are slow and isolated, including
PSR J09302301, a pulsar with nulling fraction lower limit of 30\% and
nulling timescale of seconds to minutes. This pulsar also shows evidence of
mode changing. The remaining two pulsars have undergone recycling, accreting
material from binary companions, resulting in higher spin frequencies. PSR
J05572948 is an isolated, 44 \rm{ms} pulsar that has been partially recycled
and is likely a former member of a binary system which was disrupted by a
second supernova. The paucity of such so-called `disrupted binary pulsars'
(DRPs) compared to double neutron star (DNS) binaries can be used to test
current evolutionary scenarios, especially the kicks imparted on the neutron
stars in the second supernova. There is some evidence that DRPs have larger
space velocities, which could explain their small numbers. PSR J1806+2819 is a
15 \rm{ms} pulsar in a 44 day orbit with a low mass white dwarf companion. We
did not detect the companion in archival optical data, indicating that it must
be older than 1200 Myr.Comment: 9 pages, 5 figure
Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes
A chromosphere is a universal attribute of stars of spectral type later than
~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae
binaries) show extended and highly turbulent chromospheres, which develop into
slow massive winds. The associated continuous mass loss has a significant
impact on stellar evolution, and thence on the chemical evolution of galaxies.
Yet despite the fundamental importance of those winds in astrophysics, the
question of their origin(s) remains unsolved. What sources heat a chromosphere?
What is the role of the chromosphere in the formation of stellar winds? This
chapter provides a review of the observational requirements and theoretical
approaches for modeling chromospheric heating and the acceleration of winds in
single cool, evolved stars and in eclipsing binary stars, including physical
models that have recently been proposed. It describes the successes that have
been achieved so far by invoking acoustic and MHD waves to provide a physical
description of plasma heating and wind acceleration, and discusses the
challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript;
accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake
(Berlin: Springer
Sunquake generation by coronal magnetic restructuring
Sunquakes are the surface signatures of acoustic waves in the Sun's interior
that are produced by some but not all flares and coronal mass ejections (CMEs).
This paper explores a mechanism for sunquake generation by the magnetic field
changes that occur during flares and CMEs, using MHD simulations with a
semiempirical FAL-C atmosphere to demonstrate the generation of acoustic waves
in the interior in response to changing magnetic tilt in the corona. We find
that Alfven-sound resonance combined with the ponderomotive force produces
acoustic waves in the interior with sufficient energy to match sunquake
observations when the magnetic field angle changes by the order of 10 degrees
in a region where the coronal field strength is a few hundred gauss or more.
The most energetic sunquakes are produced when the coronal field is strong,
while the variation of magnetic field strength with height and the time scale
of the tilt change are of secondary importance.Comment: 6 pages, 3 figures; accepted to Ap
The Green Bank Northern Celestial Cap Pulsar Survey - I: Survey Description, Data Analysis, and Initial Results
We describe an ongoing search for pulsars and dispersed pulses of radio
emission, such as those from rotating radio transients (RRATs) and fast radio
bursts (FRBs), at 350 MHz using the Green Bank Telescope. With the Green Bank
Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided
into 4,096 channels every 81.92 . This survey will cover the entire sky
visible to the Green Bank Telescope (, or 82% of the sky)
and outside of the Galactic Plane will be sensitive enough to detect slow
pulsars and low dispersion measure (30 ) millisecond
pulsars (MSPs) with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a
spectral index of 1.6, we will be 2.5 times more sensitive than previous and
ongoing surveys over much of our survey region. Here we describe the survey,
the data analysis pipeline, initial discovery parameters for 62 pulsars, and
timing solutions for 5 new pulsars. PSR J02145222 is an MSP in a long-period
(512 days) orbit and has an optical counterpart identified in archival data.
PSR J06365129 is an MSP in a very short-period (96 minutes) orbit with a
very low mass companion (8 ). PSR J06455158 is an isolated MSP
with a timing residual RMS of 500 ns and has been added to pulsar timing array
experiments. PSR J14347257 is an isolated, intermediate-period pulsar that
has been partially recycled. PSR J18164510 is an eclipsing MSP in a
short-period orbit (8.7 hours) and may have recently completed its spin-up
phase.Comment: 18 pages, 10 figures, 5 tables, accepted by Ap
A Hydrodynamic Model of Alfvénic Wave Heating in a Coronal Loop and Its Chromospheric Footpoints
Alfv\'enic waves have been proposed as an important energy transport
mechanism in coronal loops, capable of delivering energy to both the corona and
chromosphere and giving rise to many observed features, of flaring and
quiescent regions. In previous work, we established that resistive dissipation
of waves (ambipolar diffusion) can drive strong chromospheric heating and
evaporation, capable of producing flaring signatures. However, that model was
based on a simplified assumption that the waves propagate instantly to the
chromosphere, an assumption which the current work removes. Via a ray tracing
method, we have implemented traveling waves in a field-aligned hydrodynamic
simulation that dissipate locally as they propagate along the field line. We
compare this method to and validate against the magnetohydrodynamics code
Lare3D. We then examine the importance of travel times to the dynamics of the
loop evolution, finding that (1) the ionization level of the plasma plays a
critical role in determining the location and rate at which waves dissipate;
(2) long duration waves effectively bore a hole into the chromosphere, allowing
subsequent waves to penetrate deeper than previously expected, unlike an
electron beam whose energy deposition rises in height as evaporation reduces
the mean-free paths of the electrons; (3) the dissipation of these waves drives
a pressure front that propagates to deeper depths, unlike energy deposition by
an electron beam.Comment: Accepted to Ap
- …
