67,684 research outputs found
Flat-plate solar array project. Volume 5: Process development
The goal of the Process Development Area, as part of the Flat-Plate Solar Array (FSA) Project, was to develop and demonstrate solar cell fabrication and module assembly process technologies required to meet the cost, lifetime, production capacity, and performance goals of the FSA Project. R&D efforts expended by Government, Industry, and Universities in developing processes capable of meeting the projects goals during volume production conditions are summarized. The cost goals allocated for processing were demonstrated by small volume quantities that were extrapolated by cost analysis to large volume production. To provide proper focus and coverage of the process development effort, four separate technology sections are discussed: surface preparation, junction formation, metallization, and module assembly
Wind speed and direction shears with associated vertical motion during strong surface winds
Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds
Significant events in low-level flow conditions hazardous to aircraft
Atmospheric parameters recorded during high surface winds are analyzed to determine magnitude, frequency, duration, and simultaneity of occurrence of low level flow conditions known to be hazardous to the ascent and descent of conventional aircraft and the space shuttle. Graphic and tabular presentations of mean and extreme values and simultaneous occurrences of turbulence (gustiness and a gust factor), wind shear (speed and direction), and vertical motion (updrafts and downdrafts), along with associated temperature inversions are included as function of tower height, layer and/or distance for six 5 sec intervals (one interval every 100 sec) of parameters sampled simultaneously at the rate of 10 speeds, directions and temperatures per second during an approximately 10 min period
Persistent Rabi oscillations probed via low-frequency noise correlation
The qubit Rabi oscillations are known to be non-decaying (though with a
fluctuating phase) if the qubit is continuously monitored in the weak-coupling
regime. In this paper we propose an experiment to demonstrate these persistent
Rabi oscillations via low-frequency noise correlation. The idea is to measure a
qubit by two detectors, biased stroboscopically at the Rabi frequency. The
low-frequency noise depends on the relative phase between the two combs of
biasing pulses, with a strong increase of telegraph noise in both detectors for
the in-phase or anti-phase combs. This happens because of self-synchronization
between the persistent Rabi oscillations and measurement pulses. Almost perfect
correlation of the noise in the two detectors for the in-phase regime and
almost perfect anticorrelation for the anti-phase regime indicates a presence
of synchronized persistent Rabi oscillations. The experiment can be realized
with semiconductor or superconductor qubits.Comment: 5 page
Residual acceleration data on IML-1: Development of a data reduction and dissemination plan
The research performed consisted of three stages: (1) identification of sensitive IML-1 experiments and sensitivity ranges by order of magnitude estimates, numerical modeling, and investigator input; (2) research and development towards reduction, supplementation, and dissemination of residual acceleration data; and (3) implementation of the plan on existing acceleration databases
Microelectrophoresis of selected mineral particles
Particle mobilities of ilmenite, labradorite plagioclase, enstatite pyroxene, and olivine were measured with a Rank microelectrophoresis system to evaluate indicated mineral separability. Sodium bicarbonate buffer suspension media with and without additives (0.0001 M DTAB and 5 percent v/v ethylene glycol) were used to determine differential adsorption by mineral particles and modification of relative mobilities. Good separability between some minerals was indicated; additives did not enhance separability
Deep transfer learning for improving single-EEG arousal detection
Datasets in sleep science present challenges for machine learning algorithms
due to differences in recording setups across clinics. We investigate two deep
transfer learning strategies for overcoming the channel mismatch problem for
cases where two datasets do not contain exactly the same setup leading to
degraded performance in single-EEG models. Specifically, we train a baseline
model on multivariate polysomnography data and subsequently replace the first
two layers to prepare the architecture for single-channel
electroencephalography data. Using a fine-tuning strategy, our model yields
similar performance to the baseline model (F1=0.682 and F1=0.694,
respectively), and was significantly better than a comparable single-channel
model. Our results are promising for researchers working with small databases
who wish to use deep learning models pre-trained on larger databases.Comment: Accepted for presentation at EMBC202
- …
