The qubit Rabi oscillations are known to be non-decaying (though with a
fluctuating phase) if the qubit is continuously monitored in the weak-coupling
regime. In this paper we propose an experiment to demonstrate these persistent
Rabi oscillations via low-frequency noise correlation. The idea is to measure a
qubit by two detectors, biased stroboscopically at the Rabi frequency. The
low-frequency noise depends on the relative phase between the two combs of
biasing pulses, with a strong increase of telegraph noise in both detectors for
the in-phase or anti-phase combs. This happens because of self-synchronization
between the persistent Rabi oscillations and measurement pulses. Almost perfect
correlation of the noise in the two detectors for the in-phase regime and
almost perfect anticorrelation for the anti-phase regime indicates a presence
of synchronized persistent Rabi oscillations. The experiment can be realized
with semiconductor or superconductor qubits.Comment: 5 page