123 research outputs found

    Backflow in a Fermi Liquid

    Full text link
    We calculate the backflow current around a fixed impurity in a Fermi liquid. The leading contribution at long distances is radial and proportional to 1/r^2. It is caused by the current induced density modulation first discussed by Landauer. The familiar 1/r^3 dipolar backflow obtained in linear response by Pines and Nozieres is only the next to leading term, whose strength is calculated here to all orders in the scattering. In the charged case the condition of perfect screening gives rise to a novel sum rule for the phase shifts. Similar to the behavior in a classical viscous liquid, the friction force is due only to the leading contribution in the backflow while the dipolar term does not contribute.Comment: 4 pages, 1 postscript figure, uses ReVTeX and epsfig macro, submitted to Physical Review Letter

    Differentiation of osteoblasts and adipocytes following irradiation

    Get PDF

    Longitudinal Force on a Moving Potential

    Full text link
    We show a formal result of the longitudinal force acting on a moving potential. The potential can be velocity-dependent, which appears in various interesting physical systems, such as electrons in the presence of a magnetic flux-line, or phonons scattering off a moving vortex. By using the phase-shift analysis, we are able to show the equivalence between the adiabatic perturbation theory and the kinetic theory for the longitudinal force in the dilute gas limit.Comment: RevTeX, 4 pages, revised tex

    Backflow and dissipation during the quantum decay of a metastable Fermi liquid

    Full text link
    The particle current in a metastable Fermi liquid against a first-order phase transition is calculated at zero temperature. During fluctuations of a droplet of the stable phase, in accordance with the conservation law, not only does an unperturbed current arise from the continuity at the boundary, but a backflow is induced by the density response. Quasiparticles carrying these currents are scattered by the boundary, yielding a dissipative backflow around the droplet. An energy of the hydrodynamic mass flow of the liquid and a friction force exerted on the droplet by the quasiparticles have been obtained in terms of a potential of their interaction with the droplet.Comment: 5 pages (REVTeX), to be published in Phys. Rev.

    Distribution and consequences of VKORC1 polymorphisms in Germany

    Get PDF
    Runge, M., Von Keyserlingk, M., Braune, S., Freise, J., Eiler, T., Plenge-Bönig, A., Becker, D., Pelz, H.-J., Esther, A., Rost, S., Müller, C.R

    Microscopic theory of vortex dynamics in homogeneous superconductors

    Full text link
    Vortex dynamics in fermionic superfluids is carefully considered from the microscopic point of view. Finite temperatures, as well as impurities, are explicitly incorporated. To enable readers understand the physical implications, macroscopic demonstrations based on thermodynamics and fluctuations- dissipation theorems are constructed. For the first time a clear summary and a critical review of previous results are given.Comment: Presentations are made more straightforward. A detailed presentation that why the vortex friction is finite when the geometric phase exists, as required by referees, though I think it is obviou

    Floquet Formalism of Quantum Pumps

    Full text link
    We review Floquet formalism of quantum electron pumps. In the Floquet formalism the quantum pump is regarded as a time dependent scattering system, which allows us to go beyond the adiabatic limit. It can be shown that the well-known adiabatic formula given by Brouwer can be derived from the adiabatic limit of Floquet formalism. We compare various physical properties of the quantum pump both in the adiabatic and in the non-adiabatic regime using the Floquet theory.Comment: Latex2e 16 pages, 6 figures. A review paper to appear in Int. J. Mod. Phys.
    corecore