2,396 research outputs found
Coherent Detection of Ultra-weak Electromagnetic Fields
We explore the application of heterodyne interferometry for a weak-field
coherent detection scheme. The methods detailed here will be used in ALPS II,
an experiment designed to search for weakly-interacting, sub-eV particles. For
ALPS II to reach its design sensitivity this detection system must be capable
of accurately measuring fields with equivalent amplitudes on the order of
10 photons per second or greater. We present initial results of an
equivalent dark count rate on the order of photons per second as well
as successful generation and detection of a signal with a field strength
equivalent to photons per second
Successive Two-sided loop Jets Caused by Magnetic Reconnection between Two adjacent Filamentary Threads
We present observational analysis of two successive two-sided loop jets
observed by the ground-based New Vacuum Solar Telescope (NVST) and the
space-borne Solar Dynamics Observatory ( SDO). The two successive two-sided
loop jets manifested similar evolution process and both were associated with
the interaction of two small-scale adjacent filamentary threads, magnetic
emerging and cancellation processes at the jet's source region. High temporal
and high spatial resolution observations reveal that the two adjacent ends of
the two filamentary threads are rooted in opposite magnetic polarities within
the source region. The two threads approached to each other, and then an
obvious brightening patch is observed at the interaction position.
Subsequently, a pair of hot plasma ejections are observed heading to opposite
directions along the paths of the two filamentary threads, and with a typical
speed of two-sided loop jets of the order 150 km/s. Close to the end of the
second jet, we report the formation of a bright hot loop structure at the
source region, which suggests the formation of new loops during the
interaction. Based on the observational results, we propose that the observed
two-sided loop jets are caused by the magnetic reconnection between the two
adjacent filamentary threads, largely different from the previous scenario that
a two-sided loop jet is generated by magnetic reconnection between an emerging
bipole and the overlying horizontal magnetic fields.Comment: 14 pages, 6 figures, accepted by Ap
Interval Estimation For The Scale Parameter Of Burr Type X Distribution Based On Grouped Data
The application of some bootstrap type intervals for the scale parameter of the Burr type X distribution with grouped data is proposed. The general asymptotic confidence interval procedure (Chen & Mi, 2001) is studied. The performance of these intervals is investigated and compared. Some of the bootstrap intervals give better performance for situations of small sample size and heavy censoring
Quartz-based flat-crystal resonant inelastic x-ray scattering spectrometer with sub-10 meV energy resolution
Continued improvement of the energy resolution of resonant inelastic x-ray
scattering (RIXS) spectrometers is crucial for fulfilling the potential of this
technique in the study of electron dynamics in materials of fundamental and
technological importance. In particular, RIXS is the only alternative tool to
inelastic neutron scattering capable of providing fully momentum resolved
information on dynamic spin structures of magnetic materials, but is limited to
systems whose magnetic excitation energy scales are comparable to the energy
resolution. The state-of-the-art spherical diced crystal analyzer optics
provides energy resolution as good as 25 meV but has already reached its
theoretical limit. Here, we demonstrate a novel sub-10meV RIXS spectrometer
based on flat-crystal optics at the Ir-L absorption edge (11.215 keV)
that achieves an analyzer energy resolution of 3.9meV, very close to the
theoretical value of 3.7meV. In addition, the new spectrometer allows
efficient polarization analysis without loss of energy resolution. The
performance of the instrument is demonstrated using longitudinal acoustical and
optical phonons in diamond, and magnon in SrIrO. The novel
sub-10meV RIXS spectrometer thus provides a window into magnetic
materials with small energy scales
Dielectric Properties of the Quasi-Two-Dimensional Electron Liquid in Heterojunctions
A quasi-two-dimensional (Q2D) electron liquid (EL) is formed at the interface
of a semiconductor heterojunction. For an accurate characterization of the Q2D
EL, many-body effects need to be taken into account beyond the random phase
approximation. In this theoretical work, the self-consistent static local-field
correction known as STLS is applied for the analysis of the Q2D EL. The
penetration of the charge distribution to the barrier-acting material is taken
into consideration through a variational approach. The Coulomb from factor that
describes the effective 2D interaction is rigorously treated. The longitudinal
dielectric function and the plasmon dispersion of the Q2D EL are presented for
a wide range of electron and ionized acceptor densities choosing GaAs/AlGaAs as
the physical system. Analytical expressions fitted to our results are also
supplied to enable a widespread use of these results.Comment: 39 pages (in LaTeX), including 8 PostScript figure
Entangled-Photon Imaging of a Pure Phase Object
We demonstrate experimentally and theoretically that a coherent image of a
pure phase object may be obtained by use of a spatially incoherent illumination
beam. This is accomplished by employing a two-beam source of entangled photons
generated by spontaneous parametric down-conversion. Though each of the beams
is, in and of itself, spatially incoherent, the pair of beams exhibits
higher-order inter-beam coherence. One of the beams probes the phase object
while the other is scanned. The image is recorded by measuring the photon
coincidence rate using a photon-counting detector in each beam. Using a
reflection configuration, we successfully imaged a phase object implemented by
a MEMS micro-mirror array. The experimental results are in accord with
theoretical predictions.Comment: 11 pages, 3 figures, submittedto Phys. Rev. Let
Role of entanglement in two-photon imaging
The use of entangled photons in an imaging system can exhibit effects that
cannot be mimicked by any other two-photon source, whatever the strength of the
correlations between the two photons. We consider a two-photon imaging system
in which one photon is used to probe a remote (transmissive or scattering)
object, while the other serves as a reference. We discuss the role of
entanglement versus correlation in such a setting, and demonstrate that
entanglement is a prerequisite for achieving distributed quantum imaging.Comment: 15 pages, 2 figure
Poultry and Beef Meat as Potential Seedbeds for Antimicrobial Resistant Enterotoxigenic Bacillus Species: A Materializing Epidemiological and Potential Severe Health Hazard
Although Bacillus cereus is of particular concern in food safety and public health, the role of other Bacillus species was overlooked. Therefore, we investigated the presence of eight enterotoxigenic genes, a hemolytic gene and phenotypic antibiotic resistance profiles of Bacillusspecies in retail meat samples. From 255 samples, 124 Bacillus isolates were recovered, 27 belonged to B. cereusand 97 were non-B. cereus species. Interestingly, the non-B. cereus isolates carried the virulence genes and exhibited phenotypic virulence characteristics as the B. cereus. However, correlation matrix analysis revealed the B. cereus group positively correlates with the presence of the genes hblA, hblC, and plc, and the detection of hemolysis (p \u3c 0.05), while the other Bacillus sp. groups are negatively correlated. Tests for antimicrobial resistance against ten antibiotics revealed extensive drug and multi-drug resistant isolates. Statistical analyses didn’t support a correlation of antibiotic resistance to tested virulence factors suggesting independence of these phenotypic markers and virulence genes. Of special interest was the isolation of Paenibacillus alvei and Geobacillus stearothermophilus from the imported meat samples being the first recorded. The isolation of non-B. cereus species carrying enterotoxigenic genes in meat within Egypt, suggests their impact on food safety and public health and should therefore not be minimised, posing an area that requires further research
One-Way Entangled-Photon Autocompensating Quantum Cryptography
A new quantum cryptography implementation is presented that combines one-way
operation with an autocompensating feature that has hitherto only been
available in implementations that require the signal to make a round trip
between the users. Using the concept of advanced waves, it is shown that this
new implementation is related to the round-trip implementations in the same way
that Ekert's two-particle scheme is related to the original one-particle scheme
of Bennett and Brassard. The practical advantages and disadvantages of the
proposed implementation are discussed in the context of existing schemes.Comment: 5 pages, 1 figure; Minor edits--conclusions unchanged; accepted for
publication in Physical Review
- …
