1,017 research outputs found
Timestamp ordering and nested transactions
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1987.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.Bibliography: leaf 66.by James D. Aspnes.M.S
Localizability of Wireless Sensor Networks: Beyond Wheel Extension
A network is called localizable if the positions of all the nodes of the
network can be computed uniquely. If a network is localizable and embedded in
plane with generic configuration, the positions of the nodes may be computed
uniquely in finite time. Therefore, identifying localizable networks is an
important function. If the complete information about the network is available
at a single place, localizability can be tested in polynomial time. In a
distributed environment, networks with trilateration orderings (popular in real
applications) and wheel extensions (a specific class of localizable networks)
embedded in plane can be identified by existing techniques. We propose a
distributed technique which efficiently identifies a larger class of
localizable networks. This class covers both trilateration and wheel
extensions. In reality, exact distance is almost impossible or costly. The
proposed algorithm based only on connectivity information. It requires no
distance information
Scheduling MapReduce Jobs under Multi-Round Precedences
We consider non-preemptive scheduling of MapReduce jobs with multiple tasks
in the practical scenario where each job requires several map-reduce rounds. We
seek to minimize the average weighted completion time and consider scheduling
on identical and unrelated parallel processors. For identical processors, we
present LP-based O(1)-approximation algorithms. For unrelated processors, the
approximation ratio naturally depends on the maximum number of rounds of any
job. Since the number of rounds per job in typical MapReduce algorithms is a
small constant, our scheduling algorithms achieve a small approximation ratio
in practice. For the single-round case, we substantially improve on previously
best known approximation guarantees for both identical and unrelated
processors. Moreover, we conduct an experimental analysis and compare the
performance of our algorithms against a fast heuristic and a lower bound on the
optimal solution, thus demonstrating their promising practical performance
How Many Cooks Spoil the Soup?
In this work, we study the following basic question: "How much parallelism
does a distributed task permit?" Our definition of parallelism (or symmetry)
here is not in terms of speed, but in terms of identical roles that processes
have at the same time in the execution. We initiate this study in population
protocols, a very simple model that not only allows for a straightforward
definition of what a role is, but also encloses the challenge of isolating the
properties that are due to the protocol from those that are due to the
adversary scheduler, who controls the interactions between the processes. We
(i) give a partial characterization of the set of predicates on input
assignments that can be stably computed with maximum symmetry, i.e.,
, where is the minimum multiplicity of a state in
the initial configuration, and (ii) we turn our attention to the remaining
predicates and prove a strong impossibility result for the parity predicate:
the inherent symmetry of any protocol that stably computes it is upper bounded
by a constant that depends on the size of the protocol.Comment: 19 page
Recommended from our members
Towards Better Definitions and Measures of Internet Security
Engineering and Applied Science
Admit your weakness: Verifying correctness on TSO architectures
“The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-319-15317-9_22 ”.Linearizability has become the standard correctness criterion for fine-grained non-atomic concurrent algorithms, however, most approaches assume a sequentially consistent memory model, which is not always realised in practice. In this paper we study the correctness of concurrent algorithms on a weak memory model: the TSO (Total Store Order) memory model, which is commonly implemented by multicore architectures. Here, linearizability is often too strict, and hence, we prove a weaker criterion, quiescent consistency instead. Like linearizability, quiescent consistency is compositional making it an ideal correctness criterion in a component-based context. We demonstrate how to model a typical concurrent algorithm, seqlock, and prove it quiescent consistent using a simulation-based approach. Previous approaches to proving correctness on TSO architectures have been based on linearizabilty which makes it necessary to modify the algorithm’s high-level requirements. Our approach is the first, to our knowledge, for proving correctness without the need for such a modification
Electroreflectance spectroscopy in self-assembled quantum dots: lens symmetry
Modulated electroreflectance spectroscopy of semiconductor
self-assembled quantum dots is investigated. The structure is modeled as dots
with lens shape geometry and circular cross section. A microscopic description
of the electroreflectance spectrum and optical response in terms of an external
electric field () and lens geometry have been considered. The field
and lens symmetry dependence of all experimental parameters involved in the
spectrum have been considered. Using the effective mass formalism
the energies and the electronic states as a function of and dot
parameters are calculated. Also, in the framework of the strongly confined
regime general expressions for the excitonic binding energies are reported.
Optical selection rules are derived in the cases of the light wave vector
perpendicular and parallel to . Detailed calculation of the Seraphin
coefficients and electroreflectance spectrum are performed for the InAs and
CdSe nanostructures. Calculations show good agreement with measurements
recently performed on CdSe/ZnSe when statistical distribution on size is
considered, explaining the main observed characteristic in the
electroreflectance spectra
Quiescent consistency: Defining and verifying relaxed linearizability
Concurrent data structures like stacks, sets or queues need to be highly optimized to provide large degrees of parallelism with reduced contention. Linearizability, a key consistency condition for concurrent objects, sometimes limits the potential for optimization. Hence algorithm designers have started to build concurrent data structures that are not linearizable but only satisfy relaxed consistency requirements. In this paper, we study quiescent consistency as proposed by Shavit and Herlihy, which is one such relaxed condition. More precisely, we give the first formal definition of quiescent consistency, investigate its relationship with linearizability, and provide a proof technique for it based on (coupled) simulations. We demonstrate our proof technique by verifying quiescent consistency of a (non-linearizable) FIFO queue built using a diffraction tree. © 2014 Springer International Publishing Switzerland
Spectroscopic determination of hole density in the ferromagnetic semiconductor GaMnAs
The measurement of the hole density in the ferromagnetic semiconductor
GaMnAs is notoriously difficult using standard transport
techniques due to the dominance of the anomalous Hall effect. Here, we report
the first spectroscopic measurement of the hole density in four
GaMnAs samples () at room temperature
using Raman scattering intensity analysis of the coupled plasmon-LO-phonon mode
and the unscreened LO phonon. The unscreened LO phonon frequency linearly
decreases as the Mn concentration increases up to 8.3%. The hole density
determined from the Raman scattering shows a monotonic increase with increasing
for , exhibiting a direct correlation to the observed .
The optical technique reported here provides an unambiguous means of
determining the hole density in this important new class of ``spintronic''
semiconductor materials.Comment: two-column format 5 pages, 4 figures, to appear in Physical Review
- …
