256 research outputs found

    Predicting the extinction of Ebola spreading in Liberia due to mitigation strategies

    Get PDF
    The Ebola virus is spreading throughout West Africa and is causing thousands of deaths. In order to quantify the effectiveness of different strategies for controlling the spread, we develop a mathematical model in which the propagation of the Ebola virus through Liberia is caused by travel between counties. For the initial months in which the Ebola virus spreads, we find that the arrival times of the disease into the counties predicted by our model are compatible with World Health Organization data, but we also find that reducing mobility is insufficient to contain the epidemic because it delays the arrival of Ebola virus in each county by only a few weeks. We study the effect of a strategy in which safe burials are increased and effective hospitalisation instituted under two scenarios: (i) one implemented in mid-July 2014 and (ii) one in mid-August—which was the actual time that strong interventions began in Liberia. We find that if scenario (i) had been pursued the lifetime of the epidemic would have been three months shorter and the total number of infected individuals 80% less than in scenario (ii). Our projection under scenario (ii) is that the spreading will stop by mid-spring 2015.H.E.S. thanks the NSF (grants CMMI 1125290 and CHE-1213217) and the Keck Foundation for financial support. L.D.V. and L.A.B. wish to thank to UNMdP and FONCyT (Pict 0429/2013) for financial support. (CMMI 1125290 - NSF; CHE-1213217 - NSF; Keck Foundation; UNMdP; Pict 0429/2013 - FONCyT)Published versio

    Herdabilidade de caracteres vegetativos de quatro cultivares de coqueiro anão.

    Get PDF
    bitstream/item/26145/1/f-14.pd

    Floração e frutificação de três cultivares de Coqueiro anão.

    Get PDF
    bitstream/CPATC/19768/1/f_05_2007.pdfExiste o documento impresso

    Factors controlling spatio-temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon

    Get PDF
    [1] This study explored biotic and abiotic causes for spatio-temporal variation in soil respiration from surface litter, roots, and soil organic matter over one year at four rain forest sites with different vegetation structures and soil types in the eastern Amazon, Brazil. Estimated mean annual soil respiration varied between 13-17 t C ha(-1) yr(-1), which was partitioned into 0-2 t C ha(-1) yr(-1) from litter, 6-9 t C ha(-1) yr(-1) from roots, and 5-6 t C ha(-1) yr(-1) from soil organic matter. Litter contribution showed no clear seasonal change, though experimental precipitation exclusion over a one-hectare area was associated with a ten-fold reduction in litter respiration relative to unmodified sites. The estimated mean contribution of soil organic matter respiration fell from 49% during the wet season to 32% in the dry season, while root respiration contribution increased from 42% in the wet season to 61% during the dry season. Spatial variation in respiration from soil, litter, roots, and soil organic matter was not explained by volumetric soil moisture or temperature. Instead, spatial heterogeneity in litter and root mass accounted for 44% of observed spatial variation in soil respiration (p < 0.001). In particular, variation in litter respiration per unit mass and root mass accounted for much of the observed variation in respiration from litter and roots, respectively, and hence total soil respiration. This information about patterns of, and underlying controls on, respiration from different soil components should assist attempts to accurately model soil carbon dioxide fluxes over space and time

    Avaliação da qualidade da água na Bacia do rio Japaratuba.

    Get PDF
    bitstream/item/78793/1/Cot-120.pd

    On the Logarithmic Triviality of Scalar Quantum Electrodynamics

    Full text link
    Using finite size scaling and histogram methods we obtain numerical results from lattice simulations indicating the logarithmic triviality of scalar quantum electrodynamics, even when the bare gauge coupling is chosen large. Simulations of the non-compact formulation of the lattice abelian Higgs model with fixed length scalar fields on L4L^{4} lattices with LL ranging from 66 through 2020 indicate a line of second order critical points. Fluctuation-induced first order transitions are ruled out. Runs of over ten million sweeps for each LL produce specific heat peaks which grow logarithmically with LL and whose critical couplings shift with LL picking out a correlation length exponent of 0.50(5)0.50(5) consistent with mean field theory. This behavior is qualitatively similar to that found in pure λϕ4\lambda\phi^{4}.Comment: 9 page

    A915.34.01.08- melon line resistant to leafminer (Liriomyza sativae).

    Get PDF
    Made available in DSpace on 2018-10-25T00:54:37Z (GMT). No. of bitstreams: 1 ART18066.pdf: 707023 bytes, checksum: 7c8b614201c4591beeab4d7e53d52810 (MD5) Previous issue date: 2018-10-23bitstream/item/185054/1/ART18066.pd
    • …
    corecore