163 research outputs found

    Numerical Simulations of N=(1,1) SYM{1+1} with Large Supersymmetry Breaking

    Get PDF
    We consider the N=(1,1)N=(1,1) SYM theory that is obtained by dimensionally reducing SYM theory in 2+1 dimensions to 1+1 dimensions and discuss soft supersymmetry breaking. We discuss the numerical simulation of this theory using SDLCQ when either the boson or the fermion has a large mass. We compare our result to the pure adjoint fermion theory and pure adjoint boson DLCQ calculations of Klebanov, Demeterfi, and Bhanot and of Kutasov. With a large boson mass we find that it is necessary to add additional operators to the theory to obtain sensible results. When a large fermion mass is added to the theory we find that it is not necessary to add operators to obtain a sensible theory. The theory of the adjoint boson is a theory that has stringy bound states similar to the full SYM theory. We also discuss another theory of adjoint bosons with a spectrum similar to that obtained by Klebanov, Demeterfi, and Bhanot.Comment: 12 pages, 4 figure

    Wave functions and properties of massive states in three-dimensional supersymmetric Yang-Mills theory

    Get PDF
    We apply supersymmetric discrete light-cone quantization (SDLCQ) to the study of supersymmetric Yang-Mills theory on R x S^1 x S^1. One of the compact directions is chosen to be light-like and the other to be space-like. Since the SDLCQ regularization explicitly preserves supersymmetry, this theory is totally finite, and thus we can solve for bound-state wave functions and masses numerically without renormalizing. We present an overview of all the massive states of this theory, and we see that the spectrum divides into two distinct and disjoint sectors. In one sector the SDLCQ approximation is only valid up to intermediate coupling. There we find a well defined and well behaved set of states, and we present a detailed analysis of these states and their properties. In the other sector, which contains a completely different set of states, we present a much more limited analysis for strong coupling only. We find that, while these state have a well defined spectrum, their masses grow with the transverse momentum cutoff. We present an overview of these states and their properties.Comment: RevTeX, 25 pages, 16 figure

    Simulation of Dimensionally Reduced SYM-Chern-Simons Theory

    Get PDF
    A supersymmetric formulation of a three-dimensional SYM-Chern-Simons theory using light-cone quantization is presented, and the supercharges are calculated in light-cone gauge. The theory is dimensionally reduced by requiring all fields to be independent of the transverse dimension. The result is a non-trivial two-dimensional supersymmetric theory with an adjoint scalar and an adjoint fermion. We perform a numerical simulation of this SYM-Chern-Simons theory in 1+1 dimensions using SDLCQ (Supersymmetric Discrete Light-Cone Quantization). We find that the character of the bound states of this theory is very different from previously considered two-dimensional supersymmetric gauge theories. The low-energy bound states of this theory are very ``QCD-like.'' The wave functions of some of the low mass states have a striking valence structure. We present the valence and sea parton structure functions of these states. In addition, we identify BPS-like states which are almost independent of the coupling. Their masses are proportional to their parton number in the large-coupling limit.Comment: 18pp. 7 figures, uses REVTe

    On the Spectrum of QCD(1+1) with SU(N_c) Currents

    Get PDF
    Extending previous work, we calculate in this note the fermionic spectrum of two-dimensional QCD (QCD_2) in the formulation with SU(N_c) currents. Together with the results in the bosonic sector this allows to address the as yet unresolved task of finding the single-particle states of this theory as a function of the ratio of the numbers of flavors and colors, \lambda=N_f/N_c, anew. We construct the Hamiltonian matrix in DLCQ formulation as an algebraic function of the harmonic resolution K and the continuous parameter \lambda. Amongst the more surprising findings in the fermionic sector chiefly considered here is that the fermion momentum is a function of \lambda. This dependence is necessary in order to reproduce the well-known 't Hooft and large N_f spectra. Remarkably, those spectra have the same single-particle content as the ones in the bosonic sectors. The twist here is the dramatically different sizes of the Fock bases in the two sectors, which makes it possible to interpret in principle all states of the discrete approach. The hope is that some of this insight carries over into the continuum. We also present some new findings concerning the single-particle spectrum of the adjoint theory.Comment: 21 pp., 13 figures, version published in PR

    3D simulations of the early stages of AGN jets: geometry, thermodynamics and backflow

    Full text link
    We investigate the interplay between jets from Active Galactic Nuclei (AGNs) and the surrounding InterStellar Medium (ISM) through full 3D, high resolution, Adaptive Mesh Refinement simulations performed with the FLASH code. We follow the jet- ISM system for several Myr in its transition from an early, compact source to an extended one including a large cocoon. During the jet evolution, we identify three major evolutionary stages and we find that, contrary to the prediction of popular theoretical models, none of the simulations shows a self-similar behavior. We also follow the evolution of the energy budget, and find that the fraction of input power deposited into the ISM (the AGN coupling constant) is of order of a few percent during the first few Myr. This is in broad agreement with galaxy formation models employing AGN feedback. However, we find that in these early stages, this energy is deposited only in a small fraction (< 1%) of the total ISM volume. Finally we demonstrate the relevance of backflows arising within the extended cocoon generated by a relativistic AGN jet within the ISM of its host galaxy, previously proposed as a mechanism for self-regulating the gas accretion onto the central object. These backflows tend later to be destabilized by the 3D dynamics, rather than by hydrodynamic (Kelvin- Helmholtz) instabilities. Yet, in the first few hundred thousand years, backflows may create a central accretion region of significant extent, and convey there as much as a few millions of solar masses.Comment: Accepted in MNRAS - 16 pages, 12 figures - Multimedia available on the author's webpage: http://www.mpia.de/~ciel

    Anti-Periodic Boundary Conditions in Supersymmetric DLCQ

    Full text link
    It is of considerable importance to have a numerical method for solving supersymmetric theories that can support a non-zero central charge. The central charge in supersymmetric theories is in general a boundary integral and therefore vanishes when one uses periodic boundary conditions. One is therefore prevented from studying BPS states in the standard supersymmetric formulation of DLCQ (SDLCQ). We present a novel formulation of SDLCQ where the fields satisfy anti-periodic boundary conditions. The Hamiltonian is written as the anti-commutator of two charges, as in SDLCQ. The anti-periodic SDLCQ we consider breaks supersymmetry at finite resolution, but requires no renormalization and becomes supersymmetric in the continuum limit. In principle, this method could be used to study BPS states. However, we find its convergence to be disappointingly slow.Comment: 9pp, 2 figure

    The influence of dynamical friction on the collapse of spherical density pertubation

    Get PDF
    We solve numerically the equations of motion for the collapse of a shell of baryonic matter falling into the central regions of a cluster of galaxies, taking into account of the presence of the substructure inducing dynamical friction. The evolution of the expansion parameter a(t) of the perturbation is calculated in spherical systems. The effect of dynamical friction is to reduce the binding radius and the total mass accreted by the central regions. Using a peak density profile given by Bardeen et al. (1986) we show how the binding radius of the perturbation is modified by dinamical friction. We show how dynamical friction modifies the collapse parameter of the perturbation slowing down the collapse

    Two-Point Stress-Tensor Correlator in N=1 SYM(2+1)

    Get PDF
    Recent advances in string theory have highlighted the need for reliable numerical methods to calculate correlators at strong coupling in supersymmetric theories. We present a calculation of the correlator in N=1 SYM theory in 2+1 dimensions. The numerical method we use is supersymmetric discrete light-cone quantization (SDLCQ), which preserves the supersymmetry at every order of the approximation and treats fermions and bosons on the same footing. This calculation is done at large NcN_c. For small and intermediate r the correlator converges rapidly for all couplings. At small r the correlator behaves like 1/r^6, as expected from conformal field theory. At large r the correlator is dominated by the BPS states of the theory. There is, however, a critical value of the coupling where the large-r correlator goes to zero, suggesting that the large-r correlator can only be trusted to some finite coupling which depends on the transverse resolution. We find that this critical coupling grows linearly with the square root of the transverse momentum resolution.Comment: 16 pp., 9 figure

    Non-Perturbative Spectrum of Two Dimensional (1,1) Super Yang-Mills at Finite and Large N

    Get PDF
    We consider the dimensional reduction of N = 1 SYM_{2+1} to 1+1 dimensions, which has (1,1) supersymmetry. The gauge groups we consider are U(N) and SU(N), where N is a finite variable. We implement Discrete Light-Cone Quantization to determine non-perturbatively the bound states in this theory. A careful analysis of the spectrum is performed at various values of N, including the case where N is large (but finite), allowing a precise measurement of the 1/N effects in the quantum theory. The low energy sector of the theory is shown to be dominated by string-like states. The techniques developed here may be applied to any two dimensional field theory with or without supersymmetry.Comment: LaTex 18 pages; 5 Encapsulated PostScript figure

    Stringy effect of the holographic correspondence for Dp-brane backgrounds

    Full text link
    Based on the holographic conjecture for superstrings on Dp-brane backgrounds and the dual (p+1)-dimensional gauge theory (0≀p≀40\le p\le 4) given in hep-th/0308024 and hep-th/0405203, we continue the study of superstring amplitudes including string higher modes (n≠0n\ne 0). We give a prediction to the two-point functions of operators with large R-charge J. The effect of stringy modes do not appear as the form of anomalous dimensions except for p=3. Instead, it gives non-trivial correction to the two-point functions for supergravity modes. For p=4, the scalar two-point functions for any n behave like free fields of the effective dimension d_{eff}=6 in the infra-red limit.Comment: 23 pages, typos correcte
    • 

    corecore