406 research outputs found

    Chemical abundances and properties of the ionized gas in NGC 1705

    Get PDF
    We obtained [O III] narrow-band imaging and multi-slit MXU spectroscopy of the blue compact dwarf (BCD) galaxy NGC 1705 with FORS2@VLT to derive chemical abundances of PNe and H II regions and, more in general, to characterize the properties of the ionized gas. The auroral [O III]\lambda4363 line was detected in all but one of the eleven analyzed regions, allowing for a direct estimate of their electron temperature. The only object for which the [O III]\lambda4363 line was not detected is a possible low-ionization PN, the only one detected in our data. For all the other regions, we derived the abundances of Nitrogen, Oxygen, Neon, Sulfur and Argon out to ~ 1 kpc from the galaxy center. We detect for the first time in NGC 1705 a negative radial gradient in the oxygen metallicity of -0.24 \pm 0.08 dex kpc^{-1}. The element abundances are all consistent with values reported in the literature for other samples of dwarf irregular and blue compact dwarf galaxies. However, the average (central) oxygen abundance, 12 + log(O/H)=7.96 \pm 0.04, is ~0.26 dex lower than previous literature estimates for NGC 1705 based on the [O III]\lambda4363 line. From classical emission-line diagnostic diagrams, we exclude a major contribution from shock excitation. On the other hand, the radial behavior of the emission line ratios is consistent with the progressive dilution of radiation with increasing distance from the center of NGC 1705. This suggests that the strongest starburst located within the central \sim150 pc is responsible for the ionization of the gas out to at least \sim1 kpc. The gradual dilution of the radiation with increasing distance from the center reflects the gradual and continuous transition from the highly ionized H II regions in the proximity of the major starburst into the diffuse ionized gas.Comment: Accepted for publication on A

    HST resolves stars in a tiny body falling on the dwarf galaxy DDO 68

    Get PDF
    We present new Hubble Space Telescope (HST) imaging of a stream-like system associated with the dwarf galaxy DDO 68, located in the Lynx-Cancer Void at a distance of D\sim12.65 Mpc from us. The stream, previously identified in deep Large Binocular Telescope images as a diffuse low surface brightness structure, is resolved into individual stars in the F606W (broad V) and F814W (\simI) images acquired with the Wide Field Camera 3. The resulting V, I color-magnitude diagram (CMD) of the resolved stars is dominated by old (age\gtrsim1-2 Gyr) red giant branch (RGB) stars. From the observed RGB tip, we conclude that the stream is at the same distance as DDO 68, confirming the physical association with it. A synthetic CMD analysis indicates that the large majority of the star formation activity in the stream occurred at epochs earlier than \sim1 Gyr ago, and that the star formation at epochs more recent than \sim500 Myr ago is compatible with zero. The total stellar mass of the stream is 106M\sim10^{6} M_{\odot}, about 1/100 of that of DDO~68. This is a striking example of hierarchical merging in action at the dwarf galaxy scales.Comment: ApJ in pres

    Star Formation Histories of the LEGUS Dwarf Galaxies (I): recent History of NGC1705, NGC4449 and Holmberg II

    Get PDF
    We use HST observations from the Legacy Extragalactic UV Survey to reconstruct the recent star formation histories (SFHs) of three actively star-forming dwarf galaxies, NGC4449, Holmberg II and NGC1705, from their UV color-magnitude diagrams (CMDs). We apply a CMD fitting technique using two independent sets of stellar isochrones, PARSEC-COLIBRI and MIST, to assess the uncertainties related to stellar evolution modelling. Irrespective of the adopted stellar models, all the three dwarfs are found to have had almost constant star formation rates (SFRs) in the last 100-200 Myr, with modest enhancements (a factor of \sim2) above the 100 Myr-averaged-SFR. Significant differences among the three dwarfs are found in the overall SFR, the timing of the most recent peak and the SFR//area. The Initial Mass Function (IMF) of NGC1705 and Holmberg II is consistent with a Salpeter slope down to \approx 5 M_{\odot}, whereas it is slightly flatter, s=2.0=-2.0, in NGC4449. The SFHs derived with the two different sets of stellar models are consistent with each other, except for some quantitative details, attributable to their input assumptions. They also share the drawback that all synthetic diagrams predict a clear separation in color between upper main sequence and helium burning stars, which is not apparent in the data. Since differential reddening, significant in NGC4449, or unresolved binaries don't appear to be sufficient to fill the gap, we suggest this calls for a revision of both sets of stellar evolutionary tracks.Comment: 22 pages, 17 figures, accepted for publication on Ap

    Chemical abundances and radial velocities in the extremely metal-poor galaxy DDO 68

    Get PDF
    We present chemical abundances and radial velocities of six HII regions in the extremely metal-poor star-forming dwarf galaxy DDO 68. They are derived from deep spectra in the wavelength range 3500 - 10,000 {\AA}, acquired with the Multi Object Double Spectrograph (MODS) at the Large Binocular Telescope (LBT). In the three regions where the [O III]λ\lambda4363 {\AA} line was detected, we inferred the abundance of He, N, O, Ne, Ar, and S through the "direct" method. We also derived the oxygen abundances of all the six regions adopting indirect method calibrations. We confirm that DDO 68 is an extremely metal-poor galaxy, and a strong outlier in the luminosity - metallicity relation defined by star-forming galaxies. With the direct-method we find indeed an oxygen abundance of 12+log(O/H)=7.14±\pm0.07 in the northernmost region of the galaxy and, although with large uncertainties, an even lower 12+log(O/H)=6.96±\pm0.09 in the "tail". This is, at face value, the most metal-poor direct abundance detection of any galaxy known. We derive a radial oxygen gradient of -0.06±\pm0.03 dex/kpc (or -0.30 dex R251R_{25}^{-1}) with the direct method, and a steeper gradient of -0.12±\pm0.03 dex/kpc (or -0.59 dex R251R_{25}^{-1}) from the indirect method. For the α\alpha-element to oxygen ratios we obtain values in agreement with those found in other metal-poor star-forming dwarfs. For nitrogen, instead, we infer much higher values, leading to log(N/O)1.4\sim-1.4, at variance with the suggested existence of a tight plateau at 1.6-1.6 in extremely metal poor dwarfs. The derived helium mass fraction ranges from Y=0.240±\pm0.005 to Y=0.25±\pm0.02, compatible with standard big bang nucleosynthesis. Finally, we measured HII region radial velocities in the range 479-522 km/s from the tail to the head of the "comet", consistent with the rotation derived in the HI.Comment: Accepted for publication in MNRA

    Emission lines in early-type galaxies: active nuclei or stars?

    Full text link
    We selected 27244 nearby, red, giant early-type galaxies (RGEs) from the Sloan Digital Sky Survey (SDSS). In a large fraction (53%) of their spectra the [O III] emission line is detected, with an equivalent width (EW) distribution strongly clustered around ~0.75 A. The vast majority of those RGEs for which it is possible to derive emission line ratios (amounting to about half of the sample) show values characteristic of LINERs. The close connection between emission lines and stellar continuum points to stellar processes as the most likely source of the bulk of the ionizing photons in RGEs, rather than active nuclei. In particular, the observed EW and optical line ratios are consistent with the predictions of models in which the photoionization comes from to hot evolved stars. Shocks driven by supernovae or stellar ejecta might also contribute to the ionization budget. A minority, ~4%, of the galaxies show emission lines with an equivalent that is width a factor of ~2 greater than the sample median. Only among them are Seyfert-like spectra found. Furthermore, 40% of this subgroup have a radio counterpart, compared to ~6% of the rest of the sample. These characteristics argue in favor of an AGN origin for their emission lines. Emission lines diagnostic diagrams do not reveal a distinction between the AGN subset and the other members of the sample, and consequently they are not a useful tool for establishing the dominant source of the ionizing photons, which is better predicted by the EW of the emission lines.Comment: Accepted for publication in A&

    LBT/MODS spectroscopy of globular clusters in the irregular galaxy NGC 4449

    Get PDF
    We present intermediate-resolution (R\sim1000) spectra in the \sim3500-10,000 A range of 14 globular clusters in the magellanic irregular galaxy NGC 4449 acquired with the Multi Object Double Spectrograph on the Large Binocular Telescope. We derived Lick indices in the optical and the CaII-triplet index in the near-infrared in order to infer the clusters' stellar population properties. The inferred cluster ages are typically older than \sim9 Gyr, although ages are derived with large uncertainties. The clusters exhibit intermediate metallicities, in the range 1.2-1.2\lesssim[Fe/H]0.7\lesssim-0.7, and typically sub-solar [α/Fe\alpha/Fe] ratios, with a peak at 0.4\sim-0.4. These properties suggest that i) during the first few Gyrs NGC 4449 formed stars slowly and inefficiently, with galactic winds having possibly contributed to the expulsion of the α\alpha-elements, and ii) globular clusters in NGC 4449 formed relatively "late", from a medium already enriched in the products of type Ia supernovae. The majority of clusters appear also under-abundant in CN compared to Milky Way halo globular clusters, perhaps because of the lack of a conspicuous N-enriched, second-generation of stars like that observed in Galactic globular clusters. Using the cluster velocities, we infer the dynamical mass of NGC 4449 inside 2.88 kpc to be M(<<2.88 kpc)=3.150.75+3.16×109 M3.15^{+3.16}_{-0.75} \times 10^9~M_\odot. We also report the serendipitous discovery of a planetary nebula within one of the targeted clusters, a rather rare event.Comment: Accepted for publication in MNRAS; corrected typo in author lis

    PNe and H II regions in the starburst irregular galaxy NGC 4449 from LBT MODS data

    Get PDF
    We present deep 3500-10000 A˚\AA spectra of H II regions and planetary nebulae (PNe) in the starburst irregular galaxy NGC 4449, acquired with the Multi Object Double Spectrograph at the Large Binocular Telescope. Using the "direct" method, we derived the abundance of He, N, O, Ne, Ar, and S in six H II regions and in four PNe in NGC 4449. This is the first case of PNe studied in a starburst irregular outside the Local Group. Our H II region and PN sample extends over a galacto-centric distance range of \approx2 kpc and spans \approx0.2 dex in oxygen abundance, with average values of 12+log(O/H)=8.37±0.0512+\log(O/H)=8.37 \pm 0.05 and 8.3±0.18.3 \pm 0.1 for H II regions and PNe, respectively. PNe and H II regions exhibit similar oxygen abundances in the galacto-centric distance range of overlap, while PNe appear more than \sim1 dex enhanced in nitrogen with respect to H II regions. The latter result is the natural consequence of N being mostly synthesized in intermediate-mass stars and brought to the stellar surface during dredge-up episodes. On the other hand, the similarity in O abundance between H II regions and PNe suggests that NGC 4449' s interstellar medium has been poorly enriched in α\alpha elements since the progenitors of the PNe were formed. Finally, our data reveal the presence of a negative oxygen gradient for both H II regions and PNe, whilst nitrogen does not exhibit any significant radial trend. We ascribe the (unexpected) nitrogen behaviour as due to local N enrichment by the conspicuous Wolf-Rayet population in NGC 4449.Comment: Accepted for publication on Ap

    The starburst phenomenon from the optical/near-IR perspective

    Full text link
    The optical/near-IR stellar continuum carries unique information about the stellar population in a galaxy, its mass function and star-formation history. Star-forming regions display rich emission-line spectra from which we can derive the dust and gas distribution, map velocity fields, metallicities and young massive stars and locate shocks and stellar winds. All this information is very useful in the dissection of the starburst phenomenon. We discuss a few of the advantages and limitations of observations in the optical/near-IR region and focus on some results. Special attention is given to the role of interactions and mergers and observations of the relatively dust-free starburst dwarfs. In the future we expect new and refined diagnostic tools to provide us with more detailed information about the IMF, strength and duration of the burst and its triggering mechanisms.Comment: 6 pages, 3 figures, to appear in "Starbursts: from 30 Doradus to Lyman Break Galaxies" 2005, eds. R. de Grijs and R. M. Gonzalez Delgado (Kluwer

    Modeling the Effects of Star Formation Histories on Halpha and Ultra-Violet Fluxes in Nearby Dwarf Galaxies

    Get PDF
    We consider the effects of non-constant star formation histories (SFHs) on Halpha and GALEX far ultra-violet (FUV) star formation rate (SFR) indicators. Under the assumption of a fully populated Chabrier IMF, we compare the distribution of Halpha-to-FUV flux ratios from ~ 1500 simple, periodic model SFHs with observations of 185 galaxies from the Spitzer Local Volume Legacy survey. We find a set of SFH models that are well matched to the data, such that more massive galaxies are best characterized by nearly constant SFHs, while low mass systems experience bursts amplitudes of ~ 30 (i.e., an increase in the SFR by a factor of 30 over the SFR during the inter-burst period), burst durations of tens of Myr, and periods of ~ 250 Myr; these SFHs are broadly consistent with the increased stochastic star formation expected in systems with lower SFRs. We analyze the predicted temporal evolution of galaxy stellar mass, R-band surface brightness, Halpha-derived SFR, and blue luminosity, and find that they provide a reasonable match to observed flux distributions. We find that our model SFHs are generally able to reproduce both the observed systematic decline and increased scatter in Halpha-to-FUV ratios toward low mass systems, without invoking other physical mechanisms. We also compare our predictions with those from the Integrated Galactic IMF theory with a constant SFR. We find that while both predict a systematic decline in the observed ratios, only the time variable SFH models are capable of producing the observed population of low mass galaxies (MM_{*} < 107^{7} Msun) with normal Halpha-to-FUV ratios. These results demonstrate that a variable IMF alone has difficulty explaining the observed scatter in the Halpha-to-FUV ratios. We conclude by considering the limitations of the model SFHs, and discuss the use of additional empirical constraints to improve future SFH modeling efforts.Comment: 15 pages, 11 Figures. Accepted for publication in Ap

    The First VLBI Image of the Young, Oxygen-Rich Supernova Remnant in NGC 4449

    Full text link
    We report on sensitive 1.4-GHz VLBI radio observations of the unusually luminous supernova remnant SNR 4449-1 in the galaxy NGC 4449, which gave us the first well-resolved image of this object. The remnant's radio morphology consists of two approximately parallel bright ridges, suggesting similarities to the barrel shape seen for many older Galactic supernova remnants or possibly to SN 1987A. The angular extent of the remnant is 65 x 40 mas, corresponding to (3.7 x 2.3) x 10^{18} (D/3.8 Mpc) cm. We also present a new, high signal-to-noise optical spectrum. By comparing the remnant's linear size to the maximum velocities measured from optical lines, as well as using constraints from historical images, we conclude that the supernova explosion occurred between ~1905 and 1961, likely around 1940. The age of the remnant is therefore likely ~70 yr. We find that SNR 4449-1's shock wave is likely still interacting with the circumstellar rather than interstellar medium.Comment: 7 pages, Accepted for publication in MNRA
    corecore