1,427 research outputs found
Ultra-heavy cosmic rays: Theoretical implications of recent observations
Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element
Low-speed stability and control wind-tunnel investigations of effects of spanwise blowing on fighter flight characteristics at high angles of attack
The effects of spanwise blowing on two configurations representative of current fighter airplanes were investigated. The two configurations differed only in wing planform, with one incorporating a trapezoidal wing and the other a 60 delta wing. Emphasis was on determining the lateral-directional characteristics, particularly in the stall/departure angle-of-attack range; however, the effects of spanwise blowing on the longitudinal aerodynamics were also determined. The-tunnel tests included measurement of static force and forced-oscillation aerodynamic data, visualization of the airflow changes created by the spanwise blowing, and free-flight model tests. The effects of blowing rate, chordwise location of the blowing ports, asymmetric blowing, and blowing on the conventional aerodynamic control characteristics were investigated. In the angle-of-attack regions in which the spanwise blowing substantially improved the wing upper-surface flow field (i.e., provided reattachment of the flow aft of the leading-edge vortex), improvements in both static and dynamic lateral-directional stability were observed. Blowing effects on stability could be proverse or adverse depending on blowing rate, blowing port loaction, and wing planform. Free-flight model tests of the trapezoidal wing confirmed the beneficial effects of spanwise blowing measured in the static and dynamic force tests
High-Contrast Interference in a Thermal Cloud of Atoms
The coherence properties of a gas of bosonic atoms above the BEC transition
temperature were studied. Bragg diffraction was used to create two spatially
separated wave packets, which interfere during expansion. Given sufficient
expansion time, high fringe contrast could be observed in a cloud of arbitrary
temperature. Fringe visibility greater than 90% was observed, which decreased
with increasing temperature, in agreement with a simple model. When the sample
was "filtered" in momentum space using long, velocity-selective Bragg pulses,
the contrast was significantly enhanced in contrast to predictions
Theory of 'which path' dephasing in single electron interference due to trace in conductive environment
A single-electron two-path interference (Young) experiment is considered
theoretically. The decoherence of an electron wave packet due to the 'which
path' trace left in the conducting (metallic) plate placed under the electron
trajectories is calculated using the many-body quantum description of the
electron gas reservoir.Comment: 11 pages, 5 figures, moderate changes, 1 new figure, updated
reference
Decoherence induced by Smith-Purcell radiation
The interaction between charged particles and the vacuum fluctuations of the
electromagnetic field induces decoherence, and therefore affects the contrast
of fringes in an interference experiment. In this article we show that if a
double slit experiment is performed near a conducting grating, the fringe
visibility is reduced. We find that the reduction of contrast is proportional
to the number of grooves in the conducting surface, and that for realistic
values of the parameters it could be large enough to be observed. The effect
can be understood in terms of the Smith-Purcell radiation produced by the
surface currents induced in the conductor.Comment: 10 pages, 3 figures. Improved discussion on experimental
perspectives. References added. Version to appear in Phys. Rev.
Vortex mass in a superfluid at low frequencies
An inertial mass of a vortex can be calculated by driving it round in a
circle with a steadily revolving pinning potential. We show that in the low
frequency limit this gives precisely the same formula that was used by Baym and
Chandler, but find that the result is not unique and depends on the force field
used to cause the acceleration. We apply this method to the Gross-Pitaevskii
model, and derive a simple formula for the vortex mass. We study both the long
range and short range properties of the solution. We agree with earlier results
that the non-zero compressibility leads to a divergent mass. From the
short-range behavior of the solution we find that the mass is sensitive to the
form of the pinning potential, and diverges logarithmically when the radius of
this potential tends to zero.Comment: 4 page
Stochastic Theory of Accelerated Detectors in a Quantum Field
We analyze the statistical mechanical properties of n-detectors in arbitrary
states of motion interacting with each other via a quantum field. We use the
open system concept and the influence functional method to calculate the
influence of quantum fields on detectors in motion, and the mutual influence of
detectors via fields. We discuss the difference between self and mutual
impedance and advanced and retarded noise. The mutual effects of detectors on
each other can be studied from the Langevin equations derived from the
influence functional, as it contains the backreaction of the field on the
system self-consistently. We show the existence of general fluctuation-
dissipation relations, and for trajectories without event horizons,
correlation-propagation relations, which succinctly encapsulate these quantum
statistical phenomena. These findings serve to clarify some existing confusions
in the accelerated detector problem. The general methodology presented here
could also serve as a platform to explore the quantum statistical properties of
particles and fields, with practical applications in atomic and optical physics
problems.Comment: 32 pages, Late
Decoherence of electron beams by electromagnetic field fluctuations
Electromagnetic field fluctuations are responsible for the destruction of
electron coherence (dephasing) in solids and in vacuum electron beam
interference. The vacuum fluctuations are modified by conductors and
dielectrics, as in the Casimir effect, and hence, bodies in the vicinity of the
beams can influence the beam coherence. We calculate the quenching of
interference of two beams moving in vacuum parallel to a thick plate with
permittivity . In case of an
ideal conductor or dielectric the dephasing is suppressed
when the beams are close to the surface of the plate, because the random
tangential electric field , responsible for dephasing, is zero at the
surface. The situation is changed dramatically when
or are finite. In this case there exists a layer near
the surface, where the fluctuations of are strong due to evanescent
near fields. The thickness of this near - field layer is of the order of the
wavelength in the dielectric or the skin depth in the conductor, corresponding
to a frequency which is the inverse electron time of flight from the emitter to
the detector. When the beams are within this layer their dephasing is enhanced
and for slow enough electrons can be even stronger than far from the surface
Hydrodynamic modes of a 1D trapped Bose gas
We consider two regimes where a trapped Bose gas behaves as a one-dimensional
system. In the first one the Bose gas is microscopically described by 3D mean
field theory, but the trap is so elongated that it behaves as a 1D gas with
respect to low frequency collective modes. In the second regime we assume that
the 1D gas is truly 1D and that it is properly described by the Lieb-Liniger
model. In both regimes we find the frequency of the lowest compressional mode
by solving the hydrodynamic equations. This is done by making use of a method
which allows to find analytical or quasi-analytical solutions of these
equations for a large class of models approaching very closely the actual
equation of state of the Bose gas. We find an excellent agreement with the
recent results of Menotti and Stringari obtained from a sum rule approach.Comment: 15 pages, revtex, 1 figure
A review and road map of entrepreneurial equity financing research
Equity financing in entrepreneurship primarily includes venture capital, corporate venture capital, angel investment, crowdfunding, and accelerators. We take stock of venture financing research to date with two main objectives: (a) to integrate, organize, and assess the large and disparate literature on venture financing; and (b) to identify key considerations relevant for the domain of venture financing moving forward. The net effect is that organizing and assessing existing research in venture financing will assist in launching meaningful, theory-driven research as existing funding models evolve and emerging funding models forge new frontiers
- …
