307 research outputs found

    La cenere vulcanica

    Get PDF
    La cenere vulcanica è formata da particelle solide di dimensioni minori di 2 mm che si formano durante l'attività esplosiva di un vulcano. Al microscopio la cenere appare costituita da particelle di magma solidificato (juvenili), frammenti di rocce pre-esistenti e cristalli. La cenere è dura, abrasiva, non si scioglie in acqua ed è composta da silicati, soprattutto di alluminio e magnesio

    Board of Forestry

    Get PDF

    Relationship between tremor and volcanic activity during the Southeast Crater eruption on Mount Etna in early 2000

    Get PDF
    The Southeast Crater of Mount Etna (Italy) was characterized by a violent eruptive activity between 26 January and 24 June 2000. This activity produced 64 lava fountain episodes with repose periods from 3 hours to 10 days. We estimated a volume of about 15–20 106 m3 lava and at least 2–3 106 m3 of tephra. We compared the paroxysmal volcanic activity to its associated seismic signature: The high number of events highlighted a strict correlation between tremor and volcanic activity. Seismic and volcanic characteristics, such as the frequency of occurrence, the duration of lava fountains and the associated tremor energy, suggested the subdivision of the studied period into two stages separated by the 20 February event. Combining volcanic with seismic data, we observed some useful relationships among lava fountain height, sustained column height and Reduced Displacement; in addition, we found that the entire episode was well correlated with the duration of the amplitude increase. Computing the tremor energy linked to each event, the total energy associated with lava fountains episodes results in 76% of the energy released during the whole period. Finally, the different ratios among the overall spectral amplitude of the seismic signals of the stations located at different altitudes suggested to us the elaboration of a simple qualitative model to explain the dynamic behavior of the tremor source during the whole episode

    The 2nd to 4th century explosive activity of Vesuvius: new data on the timing of the upward migration of the post-A.D. 79 magma chamber

    Get PDF
    ber (SMM), the eruption cycle occurred at Vesuvius (Italy) in the period between the A.D. 79 plinian and the A.D. 472 subplinan eruptions. Historical accounts report only sporadic, poorly reliable descriptions of the volcanic activity in this period, during which a stratified sequence of ash and lapilli beds, up to 150 cm thick, with a total volume estimated around 0.15 km3, was widely dispersed on the outer slopes of the volcano. Stratigraphic studies and component analyses suggest that activity was characterized by mixed hydromagmatic and magmatic processes. The eruption style has been interpreted as repeated alternations of continuous and prolonged ash emission activity intercalated with short-lived, violent strombolian phases. Analyses of the bulk rock composition reveal that during the entire eruption cycle, magma maintained an homogeneous phonotephritic composition. In addition, the general trends of major and trace elements depicted by the products of the A.D. 79 and A.D. 472 eruptions converge to the SMM composition, suggesting a common mafic endmember for these eruptions. The volatile content measured in pyroxene-hosted melt inclusions indicates two main values of crystallization pressures, around 220 and 70 MPa, roughly corresponding to the previously estimated depth of the magma reservoirs of the A.D. 79 and A.D. 472 eruptions, respectively. The study of SMM eruption cycle may thus contribute to understand the processes governing the volcano reawakening immediately after a plinian event, and the timing and modalities which govern the migration of the magma reservoir

    Comment on "Feynman Effective Classical Potential in the Schrodinger Formulation"

    Full text link
    We comment on the paper "Feynman Effective Classical Potential in the Schrodinger Formulation"[Phys. Rev. Lett. 81, 3303 (1998)]. We show that the results in this paper about the time evolution of a wave packet in a double well potential can be properly explained by resorting to a variational principle for the effective action. A way to improve on these results is also discussed.Comment: 1 page, 2eps figures, Revte

    Characterizing high energy explosive eruptions at Stromboli volcano using multidisciplinary data: An example from the 9 January 2005 explosion

    Get PDF
    Stromboli is well known for its persistent, normal explosive activity, consisting of intermittent, mild to moderate, Strombolian explosions that typically occur every 10–20 min. All tephras erupted during this activity usually fall back into the crater terrace, and consist of volatile-poor scoriae fed by Highly Porphyritic (HP) magma. More occasionally, large explosions or “paroxysms” eject a greater quantity of tephra, mainly consisting of HP scoriae and pumice clasts of Low Porphyritic (LP) magma, but also including large lithic blocks. In addition to this activity, between 2004 and 2006 high energy explosions, displaying an intermediate eruptive style between that of normal and paroxysmal explosions in terms of column height, duration and tephra dispersal, were observed to occur at a frequency of one to eight events per year. While many volcanological, geochemical and geophysical studies have focused in the last few years on the two endmembers of activity, i.e. normal or paroxysmal, a detailed investigation on these intermediate types of events has not been carried out yet. Here we report of a study on the 9 January 2005 explosion, one of the high energy explosions during which the main fountaining phase lasted nearly a minute causing ejection of coarse bombs up to a height of 120 m, and of ash and lapilli to N200 m. An accompanying ash plume rose up to 500 m at the end of the explosion. We present a multidisciplinary approach that integrates the results from analysis of live-camera images with compositional and textural characterization of the erupted products. Major element composition of glassy groundmass and 3D views of textures in the erupted scoriae support the hypothesis based on volcanological observations that this explosion falls between normal and paroxysmal activity, for which we use the term “intermediate”. By comparing the video-camera images of the 9 January 2005 explosion with volcanological features of other high energy explosions that occurred at Stromboli between June 2004 and October 2006, we find that three additional events can be considered intermediate explosions, suggesting that this type of activity may be fairly common on this volcano. The results of this study, although preliminary given our limited dataset, clearly indicate that the methodology used here can be successfully applied to better define the range of eruptive styles typifying the normal explosive activity, potentially improving our capability of eruption forecasting and assessing volcanic hazard at Stromboli

    Implementazione di una nuova procedura per caratterizzare la forma di particelle mediante misure al CAMSIZER e algoritmi di clustering

    Get PDF
    In this work we present the calibration phase of a new procedure for the characterization of the shape of pyroclastic particles. This research has been granted by INGV of Catania, with funds deriving from the “Progetto Giovani”, in collaboration with Retsch Technology in Haan. The innovation of this procedure arises from the use of CAMSIZER (an instrument developed by the German leader company). This instrument permits to obtain very important information both on size and shape parameters of a high number of particles (hundreds of thousands data). Moreover, we used clustering and classification algorithms in order to group particles according to their morphologic characteristics. This calibration phase has been tested only on standard materials with regular geometries such as cubes, spheres and cylinders. In the future we will apply this methodology to volcanic ash particles that, as well-known, are characterized by irregular morphologies

    Leachate analyses of volcanic ashes from Stromboli volcano: A proxy for the volcanic gas plume composition?

    Get PDF
    Many volcanoes show a change in chemical composition of the gas phase prior to periods of eruptive activity. Fine‐grained tephra erupted from active vents and transported through volcanic plumes can adsorb, and therefore rapidly scavenge, volatile elements such as sulfur, halogens, and metal species in the form of soluble salts adhering to ash surfaces. Analysis of such water‐soluble surface materials is a suitable supplement for remote monitoring of volcanic gases at inaccessible volcanoes. In this work, ash samples of the 2004 to 2009 eruptive activity of Stromboli volcano were sampled, leached, and analyzed for major and trace elements. Data analysis and interpretation was focused on determining the relationship between chemical composition of water‐soluble components adhering to volcanic ash and the volcano’s activity state. First results show significant temporal variations in ash leachate compositions, reflecting changes in the eruptive style of the volcano. In particular, we reveal that ash leachates S/F and Mg/Na ratios showed marked increases prior to a large‐scale explosion on 15 March 2007.PublishedD172041.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveJCR Journalreserve

    The paroxysmal event and its deposits

    Get PDF
    The 5 April 2003 eruption of Stromboli volcano (Italy) was the most violent in the past 50 years. It was also the best documented due to the accurate geophysical monitoring of the ongoing effusive eruption. Detailed field studies carried out a few hours to a few months after the event provided further information that were coupled with visual documentation to reconstruct the explosive dynamics. The eruption consisted of an 8-min-long explosive event preceded by a short-lived precursory activity that evolved into the impulsive ejection of gas and pyroclasts. Meter-sized ballistic blocks were launched to altitudes of up to 1400 m above the craters falling on the volcano flanks and on the village of Ginostra, about 2 km far from the vent. The vertical jet of gas and pyroclasts above the craters fed a convective plume that reached a height of 4 km. The calculated erupted mass yielded values of 1.1–1.4 × 108 kg. Later explosions generated a scoria flow deposit, with an estimated mass of 1.0–1.3 × 107 kg. Final, waning ash explosions closet the event. The juvenile fraction consisted of an almost aphyric, highly vesicular pumice mingled with a shallow-derived, crystal-rich, moderately vesicular scoria. Resuming of the lava emission a few hours after the paroxysm indicate that the shallow magmatic system was not significantly modified during the explosions. Combination of volume data with duration of eruptive phases allowed us to estimate the eruptive intensity: during the climactic explosive event, the mass discharge rate was between 106 and 107 kg/s, whereas during the pyroclastic flow activity, it was 2.8–3.6 × 105 kg/s. Strong similarities with other historical paroxysms at Stromboli suggest similar explosion dynamics

    Assessing pyroclastic fall hazard through field data and numerical simulation: Example from Vesuvius

    Get PDF
    A general methodology of pyroclastic fall hazard assessment is proposed on the basis of integrated results of field studies and numerical simulations. These approaches result in two different methods of assessing hazard: (1) the ‘‘field frequency,’’ based on the thickness and distribution of past deposits and (2) the ‘‘simulated probability,’’ based on the numerical modeling of tephra transport and fallout. The proposed methodology mostly applies to volcanoes that, by showing a clear correlation between the repose time and the magnitude of the following eruptions, allows the definition of a reference ‘‘maximum expected event’’ (MEE). The application to Vesuvius is shown in detail. Using the field frequency method, stratigraphic data of 24 explosive events in the 3–6 volcanic explosivity index range in the last 18,000 years of activity are extrapolated to a regular grid in order to obtain the frequency of exceedance in the past of a certain threshold value of mass loading (100, 200, 300, and 400 kg/m2). Using the simulated probability method, the mass loading related to the MEE is calculated based on the expected erupted mass (5 1011 kg), the wind velocity profiles recorded during 14 years, and various column heights and grain-size populations. The role of these factors was parametrically studied performing 160,000 simulations, and the probability that mass loading exceeded the chosen threshold at each node was evaluated. As a general rule, the field frequency method results are more reliable in proximal regions, provided that an accurate database of field measurements is available. On the other hand, the simulated probability method better describes events in middle distal areas, provided that the MEE magnitude can be reliably assumed. In the Vesuvius case, the integration of the two methods results in a new fallout hazard map, here presented for a mass loading value of 200 kg/m2
    • …
    corecore