20 research outputs found

    Luminomagnetic bifunctionality of Mn2+-bonded graphene oxide/reduced graphene oxide two dimensional nanosheets

    Get PDF
    Herein, we report the luminomagnetic bifunctional properties of two-dimensional (2D) Mn2+ bonded graphene oxide (GO)/reduced graphene oxide (RGO) nanosheets synthesized using a facile route of oxidation followed by a solvothermal reduction method. Photoluminescence (PL) studies (excited by different wavelengths) revealed that the resonant energy transfer between Mn2+ and sp(3)/sp(2) clusters of GO/RGO is responsible for the enhancement of emissions. Moreover, pH-sensitive PL behaviors have also been investigated in detail. The ferromagnetic behavior is believed to arise due to defects in Mn2+ bonded GO composites. Thus, present reduction method provides a direct route to tune and enhance the optical properties of GO and RGO nanosheets bonded with Mn2+ ions, which creates an opportunity for various technological applications

    Synthesis of monoclinic Celsian from coal fly ash by using a one-step solid-state reaction

    Get PDF
    Monoclinic (Celsian) and hexagonal (Hexacelsian) Ba1−xSrxAl2Si2O8 solid solutions, where x = 0, 0.25, 0.375, 0.5, 0.75 or 1, were synthesized by using Coal Fly Ash (CFA) as main raw material, employing a simple one-step solid-state reaction process involving thermal treatment for 5 h at 850–1300 °C. Fully monoclinic Celsian was obtained at 1200 °C/5 h, for SrO contents of 0.25 ≤ x ≤ 0.75. However, an optimum SrO level of 0.25 ≤ x ≤ 0.375 was recommended for the stabilization of Celsian. These synthesis conditions represent a significant improvement over the higher temperatures, longer times and/or multi-step processes needed to obtain fully monoclinic Celsian, when other raw materials are used for this purpose, according to previous literature. These results were attributed to the role of the chemical and phase constitution of CFA as well as to a likely mineralizing effect of CaO and TiO2 present in it, which enhanced the Hexacelsian to Celsian conversion

    Mathematical and experimental investigation of water migration in plant xylem

    Get PDF
    Plant can take water from soil up to several metres high. However, the mechanism of how water rises against gravity is still controversially discussed despite a few mechanisms have been proposed. Also, there still lacks of a critical transportation model because of the diversity and complex xylem structure of plants. This paper mainly focuses on the water transport process within xylem and a mathematical model is presented. With a simplified micro channel from xylem structure and the calculation using the model of water migration in xylem, this paper identified the relationship between various forces and water migration velocity. The velocity of water migration within the plant stem is considered as detail as possible using all major forces involved, and a full mathematical model is proposed to calculate and predict the velocity of water migration in plants. Using details of a specific plant, the velocity of water migration in the plant can be calculated, and then compared to the experimental result from Magnetic Resonance Imaging (MRI). The two results match perfectly to each other, indicating the accuracy of the mathematical model, thus the mathematical model should have brighter future in further applications

    Analysis of YouTube as a Source of Information for West Nile Virus Infection

    No full text

    Removal of Heavy Metals Using Hybrid Precursor Prepared from Agro Residue (Rice Husk)

    No full text
    Rice husk is an abundantly available waste material in all rice producing countries. In certain regions this low value agricultural by product is used as a fuel for parboiling paddy in rice mills, it produced 13-15MJ/kg of energy. The partially burned rice husk in turn contributes to more environmental pollution. This rice husk contains nearly 20 percent silica, can be made into adsorbent material, which is used, in environmental remediation. Developed countries have accepted and followed the concept of “no waste” and all such materials are termed as “new resources” for new material development through value addition. In the present study hybrid precursor, which contains both carbon and silicon, used for the removal of heavy toxic metals, such as lead, copper and zinc present in wastewater .The efficiency of the hybrid precursor in the removal of heavy metals is approximately 90%
    corecore