665 research outputs found

    Evaluating the predicted reliability of mechatronic systems: state of the art

    Get PDF
    Reliability analysis of mechatronic systems is a recent field and a dynamic branch of research. It is addressed whenever there is a need for reliable, available, and safe systems. The studies of reliability must be conducted earlier during the design phase, in order to reduce costs and the number of prototypes required in the validation of the system. The process of reliability is then deployed throughout the full cycle of development. This process is broken down into three major phases: the predictive reliability, the experimental reliability and operational reliability. The main objective of this article is a kind of portrayal of the various studies enabling a noteworthy mastery of the predictive reliability. The weak points are highlighted. Presenting an overview of all the quantitative and qualitative approaches concerned with modelling and evaluating the prediction of reliability is so important for future reliability studies and for academic research to come up with new methods and tools. The mechatronic system is a hybrid system, it is dynamic, reconfigurable, and interactive. The modeling carried out of reliability prediction must take into account these criteria. Several methodologies have been developed in this track of research. In this regard, the aforementioned methodologies will be analytically sketched in this paper.Comment: 13 page, Mechanical Engineering: An International Journal (MEIJ), Vol. 3, No. 2, May 201

    Prise en compte des interactions multi-domaines lors de l’évaluation de la fiabilité prévisionnelle des systèmes mécatroniques

    Get PDF
    The mechatronic systems are hybrid, dynamic, interactive and reconfigurable. Therefore their dysfunctional modeling is very difficult. Multi-physical interactions between components have impacts on the degradation or on system failures, leading thus to more uncertainty in reliability evaluation. The work presented in this paper aims to improve the integration of multi-domain interactions in the reliability assessment of mechatronic systems. After a presentation of the state of the art of mechatronic systems reliability estimation methods, we propose to represent multi domain interactions by influential factors in the dysfunctional model. We generally use proportional hazard models; in the case of an interaction represented by a temperature stress, Arrhenius model is used

    Polarization dynamics in nonlinear anisotropic fibers

    Get PDF
    We give an extensive study of polarization dynamics in anisotropic fibers exhibiting a third-order index nonlinearity. The study is performed in the framework of the Stokes parameters with the help of the Poincaré sphere. Stationary states are determined, and their stability is investigated. The number of fixed points and their stability depend on the respective magnitude of the linear and nonlinear birefringence. A conservation relation analogous to the energy conservation in mechanics allows evidencing a close analogy between the movement of the polarization in the Poincaré sphere and the motion of a particle in a potential well. Two distinct potentials are found, leading to the existence of two families of solutions, according to the sign of the total energy of the equivalent mechanical system. The mechanical analogy allows us to fully characterize the solutions and also to determine analytically the associated beat lengths. General analytical solutions are given for the two families in terms of Jacobi’s functions. The intensity-dependent transmission of a fiber placed between two crossed polarizers is calculated. Optimal conditions for efficient nonlinear switching compatible with mode-locking applications are determined. The general case of a nonlinear fiber ring with an intracavity polarizer placed between two polarization controllers is also considered

    Evidential Networks for Evaluating Predictive Reliability of Mechatronics Systems under Epistemic Uncertainties

    Get PDF
    In reliability predicting field, the probabilistic approaches are based on data relating to the components which can be precisely known and validated by the return of experience REX, but in the case of complex systems with high-reliability precision such as mechatronic systems, uncertainties are inevitable and must be considered in order to predict with a degree of confidence the evaluated reliability. In this paper, firstly we present a brief review of the non-probabilistic approaches. Thereafter we present our methodology for assessing the reliability of the mechatronic system by taking into account the epistemic uncertainties (uncertainties in the reliability model and uncertainties in the reliability parameters) considered as a dynamic hybrid system and characterized by the existence of multi-domain interaction between its failed components. The key point in this study is to use an Evidential Network “EN” based on belief functions and the dynamic Bayesian network. Finally, an application is developed to illustrate the interest of the proposed methodology

    Dynamic Bayesian Network for Reliability of Mechatronic System with Taking Account the Multi-Domain Interaction

    Get PDF
    This article presents a methodology for reliability prediction during the design phase of mechatronic system considered as an interactive dynamic system. The difficulty in modeling reliability of a mechatronic system is mainly due to failures related to the interaction between the different domains called Multi-domain interaction. Therefore in this paper, after a presentation of the state of the art of mechatronic systems reliability estimation methods, we propose a original approach by representing multi domain interactions by influential factors in the dysfunctional modeled by Dynamic Bayesian Networks. A case study demonstrates the interest of the proposed approach

    Evaluation of the mechatronic systems reliability under parametric uncertainties

    Get PDF
    The main research intent of this paper is to evaluate the predicted reliability of mechatronic system, with take into account the epistemic uncertainties, The work reported here presents a new methodology based on integrating the petri network with the belief functions, in order to create a belief network, and to show how to propagate the parametric uncertainties in reliability models, Some notions of uncertainty related to the reliability systems are presented, subsequently a brief definition of the belief function and its application in reliability studies are detailed and how we integrate it in petri network. To take into account the interactive aspect of mechatronic systems, we introduce the uncertainties associated to this interaction, by implementing the new method proposed by using belief network. Secondly, we study the propagation of these interaction uncertainties in system reliability. Finally, in regard to applicate the methodology, an industrial example "intelligent actuator" is developed

    Grande tache pigmentée pileuse révélant une forme familiale de la maladie de Von Recklinghausen

    Get PDF
    La neurofibromatose de type 1 (NF1) ou maladie de Von Recklinghausen appartient au groupe de maladies appelées phacomatoses. C'est une affection autosomique dominante relativement rare. La NF1 est caractérisée par une extrême variabilité clinique que l'on retrouve également au sein d'une même famille. Le tableau clinique de la NF1 associe, le plus souvent, de multiples taches café au lait, des lentigines axillaires ou inguinales, des neurofibromes cutanés et des nodules de Lisch. Les difficultés d'apprentissage sont fréquentes et peuvent être graves dans certaines formes cliniques. Il est important de détecter précocement les neurofibromes plexiformes, les gliomes intracérébraux, les tumeurs des gaines nerveuses, les anomalies vasculaires et les dysplasies osseuses. L'évolution est imprévisible ce qui rend le pronostic incertain par une éventuelle survenue dedégénérescence malignes. Nous rapportons ici l'observation d'une grande tache cutanée pigmentée pilleuse de découverte fortuite qui nous a révélé deux cas familiaux de neurofibromatose 1 d'expression différente

    The Ultrasonic Field of Focused Trandsucers Through a Liquid-Solid Interface

    Get PDF
    This paper presents theoretical and experimental results on the ultrasonic field of focused immersion transducers. The French Atomic Energy Commission (C.E.A.) has developed a software which calculates the ultrasonic field produced by a focused (or unfocused) transducer through a liquid-solid interface at normal or oblique incidence. The radiation of the transducer is formulated by the method of the Rayleigh integral, extended to take into account the liquid-solid interface. Firstly we describe this model, then we present measurements of the ultrasonic field produced by focused transducers in steel blocks. Experiments have been made using, at low frequencies, an electrodynamic probe, and, at high frequencies, an optical probe

    Mechanism of dispersive-wave soliton interaction in fiber lasers

    Get PDF
    Date du colloque : 06/2012International audienc
    • …
    corecore