11 research outputs found
Static program analysis for Java Card applets
The Java Card API provides a framework of classes and interfaces that hides the details of the underlying smart card interface, thus relieving developers from going through the swamps of microcontroller programming. This allows application developers to concentrate most of their effort on the details of application, assuming proper use of the Java Card API calls regarding (i) the correctness of the methods' invocation targets and their arguments and (ii) temporal safety, i.e. the requirement that certain method calls have to be used in certain orders. Several characteristics of the Java Card applets and their multiple-entry-point program structure make it possible for a potentially unhandled exception to reach the invoked entry point. This contingency opens a possibility to leave the applet in an unpredictable state that is potentially dangerous for the application's security. Our work introduces automatic static program analysis as a means for the early detection of misused and therefore dangerous API calls. The shown analyses have been implemented within the FindBugs bug detector, an open source framework that applies static analysis functions on the applet bytecode.Anglai
Nitrogen fertilization rates in a subtropical peach orchard: effects on tree vigor and fruit quality
Genetic analysis of iron chlorosis tolerance in Prunus rootstocks
39 Pags., 4 Tabls., 4 Figs. The definitive version is available at: http://link.springer.com/journal/11295The high economic losses caused by the occurrence of iron chlorosis in Prunus orchards in the Mediterranean area justifies the implementation of breeding programs to generate high-performance rootstocks for different edaphoclimatic area conditions. For that reason, the genetic control of iron chlorosis tolerance was studied in an F1 population derived from a three-way interspecific cross between a Myrobalan plum (P 2175) and an almond × peach hybrid (Felinem). Several phenotypic measurements were assessed to guarantee an accurate data set for genetic analysis. SPAD (Soil and Plant Analyzer Development) values, chlorophyll concentration, and visual diagnostic symptoms were highly correlated with leaf chlorosis in trees. SPAD value was the most reliable measure, since it was an objective, unbiased, and non-destructive method. Two significant quantitative trait loci (QTLs) involved in SPAD and chlorophyll concentration were identified for Felinem in linkage groups 4 and 6. Both QTLs were detected in four of the six consecutive years of the experiment. For P 2175, two of the three putative QTLs identified, pspad4.1 and chl4.1, were placed in linkage group 4. These QTLs were related to the SPAD values and chlorophyll concentration, respectively, and co-localized with QTLs detected in the Felinem map affecting the same traits. Candidate gene PFIT, related to iron metabolism, was localized within the confidence interval of the QTL in linkage group 4. This research suggests an association of this chromosome region with tolerance to iron chlorosis in Prunus, and it provides a first approach to localize candidate genes involved in tolerance to this abiotic stress.This research was funded by MICINN (Spanish Ministry of Science and Innovation, AGL 2008-00283) and co-funded with a FEDER project and Gobierno de Aragón (A44). M.J. Gonzalo was the beneficiary of an I3P-PC2006 contract from the CSIC-FSE.Peer reviewe